Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock’s future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company’s movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung.
"Sinopsis" puede pertenecer a otra edición de este libro.
Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock’s future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company’s movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung.
Seung-Hwan Lee - Associate Professor. Department of Mathematics. Illinois Wesleyan University, Bloomington.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock's future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company's movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung. 60 pp. Englisch. Nº de ref. del artículo: 9783659233579
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Lee Seung-HwanSeung-Hwan Lee - Associate Professor. Department of Mathematics. Illinois Wesleyan University, Bloomington.Investigating dependence structures of stocks that are related to one another should be an important conside. Nº de ref. del artículo: 385766304
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 60 pages. 8.66x5.91x0.14 inches. In Stock. Nº de ref. del artículo: 3659233579
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock¿s future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company¿s movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch. Nº de ref. del artículo: 9783659233579
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock's future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company's movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung. Nº de ref. del artículo: 9783659233579
Cantidad disponible: 1 disponibles