Denoising of any type of signal is a vital part of communication and signal processing system. A signal in the communication system is the information containing part which needs to be processed, but during the process some noise is added in the signal and signal become noisy. The source of noise like noisy engine, pump etc introduces noise over telephone channel or in radio communication device. This is now necessary to denoise that signal or to remove that noise from that signal. Denoising of a signal can be done by using a low pass Butterworth filter, statistically matched wavelet filter and wavelet thresholding method. Wavelet transform is a very helpful method of speech signal analysis and it can be used in many applications for e.g. image processing and signal de-noising. Wavelet transform breaks a speech signal into multi-scale representation. It is also called wavelet thresholding. This technique replaces the coefficients by zero below and above a threshold value. This technique is very useful to minimize the mean square error. This report is based on wavelet denoising algorithm. Number of wavelets is applied on different speech signal and performance is evaluated.
"Sinopsis" puede pertenecer a otra edición de este libro.
Denoising of any type of signal is a vital part of communication and signal processing system. A signal in the communication system is the information containing part which needs to be processed, but during the process some noise is added in the signal and signal become noisy. The source of noise like noisy engine, pump etc introduces noise over telephone channel or in radio communication device. This is now necessary to denoise that signal or to remove that noise from that signal. Denoising of a signal can be done by using a low pass Butterworth filter, statistically matched wavelet filter and wavelet thresholding method. Wavelet transform is a very helpful method of speech signal analysis and it can be used in many applications for e.g. image processing and signal de-noising. Wavelet transform breaks a speech signal into multi-scale representation. It is also called wavelet thresholding. This technique replaces the coefficients by zero below and above a threshold value. This technique is very useful to minimize the mean square error. This report is based on wavelet denoising algorithm. Number of wavelets is applied on different speech signal and performance is evaluated.
I am working as an Assistant professor at B.M.I.E.T. Sonepat, Haryana, INDIA. I have done M.Tech from M.M.U. Mullana, Ambala, INDIA. I have done M.tech research in Denoising of Speech Signal by using wavelets and i am currently working on Designing of Adaptive Wavelet matched to a specified signal.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,88 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bansal MohitI am working as an Assistant professor at B.M.I.E.T. Sonepat, Haryana, INDIA. I have done M.Tech from M.M.U. Mullana, Ambala, INDIA. I have done M.tech research in Denoising of Speech Signal by using wavelets and i am cur. Nº de ref. del artículo: 5141616
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA78736592317036
Cantidad disponible: 1 disponibles