 
    Scientific Essay from the year 2012 in the subject Electrotechnology, Priyadarshini College of Engineering, Nagpur, language: English, abstract: Adders are one of the widely used digital components in digital integrated circuit design. Addition is the basic operation used in almost all computational systems. Therefore, the efficient implementation and design of arithmetic units requires the binary adder structures to be implemented in an equally efficient manner. A ripple carry adder has smaller area but less speed. A carry look-ahead adder is faster though its area requirements are high. Carry select adders (CSLA) lie in middle. In this work a novel carry select adder using Binary Excess Converter (BEC) is proposed. It provides good compromise between cost and performance thereby establishing a proper trade-off between time and area complexities. In this work Tanner EDA is used for the comparison of all adders - Ripple carry adder, Bitwise carry select adder, Square root carry select adder, proposed carry select adder using BEC.
"Sinopsis" puede pertenecer a otra edición de este libro.
Scientific Essay from the year 2012 in the subject Electrotechnology, Priyadarshini College of Engineering, Nagpur, language: English, abstract: Adders are one of the widely used digital components in digital integrated circuit design. Addition is the basic operation used in almost all computational systems. Therefore, the efficient implementation and design of arithmetic units requires the binary adder structures to be implemented in an equally efficient manner. A ripple carry adder has smaller area but less speed. A carry look-ahead adder is faster though its area requirements are high. Carry select adders (CSLA) lie in middle. In this work a novel carry select adder using Binary Excess Converter (BEC) is proposed. It provides good compromise between cost and performance thereby establishing a proper trade-off between time and area complexities. In this work Tanner EDA is used for the comparison of all adders - Ripple carry adder, Bitwise carry select adder, Square root carry select adder, proposed carry select adder using BEC.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Scientific Essay from the year 2012 in the subject Electrotechnology, Priyadarshini College of Engineering, Nagpur, language: English, abstract: Adders are one of the widely used digital components in digital integrated circuit design. Addition is the basic operation used in almost all computational systems. Therefore, the efficient implementation and design of arithmetic units requires the binary adder structures to be implemented in an equally efficient manner. A ripple carry adder has smaller area but less speed. A carry look-ahead adder is faster though its area requirements are high. Carry select adders (CSLA) lie in middle. In this work a novel carry select adder using Binary Excess Converter (BEC) is proposed. It provides good compromise between cost and performance thereby establishing a proper trade-off between time and area complexities. In this work Tanner EDA is used for the comparison of all adders - Ripple carry adder, Bitwise carry select adder, Square root carry select adder, proposed carry select adder using BEC. 12 pp. Englisch. Nº de ref. del artículo: 9783656885849
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Scientific Essay from the year 2012 in the subject Electrotechnology, Priyadarshini College of Engineering, Nagpur, language: English, abstract: Adders are one of the widely used digital components in digital integrated circuit design. Addition is the basic operation used in almost all computational systems. Therefore, the efficient implementation and design of arithmetic units requires the binary adder structures to be implemented in an equally efficient manner. A ripple carry adder has smaller area but less speed. A carry look-ahead adder is faster though its area requirements are high. Carry select adders (CSLA) lie in middle. In this work a novel carry select adder using Binary Excess Converter (BEC) is proposed. It provides good compromise between cost and performance thereby establishing a proper trade-off between time and area complexities. In this work Tanner EDA is used for the comparison of all adders ¿ Ripple carry adder, Bitwise carry select adder, Square root carry select adder, proposed carry select adder using BEC.Books on Demand GmbH, Überseering 33, 22297 Hamburg 12 pp. Englisch. Nº de ref. del artículo: 9783656885849
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Scientific Essay from the year 2012 in the subject Electrotechnology, Priyadarshini College of Engineering, Nagpur, language: English, abstract: Adders are one of the widely used digital components in digital integrated circuit design. Addition is the basic operation used in almost all computational systems. Therefore, the efficient implementation and design of arithmetic units requires the binary adder structures to be implemented in an equally efficient manner. A ripple carry adder has smaller area but less speed. A carry look-ahead adder is faster though its area requirements are high. Carry select adders (CSLA) lie in middle. In this work a novel carry select adder using Binary Excess Converter (BEC) is proposed. It provides good compromise between cost and performance thereby establishing a proper trade-off between time and area complexities. In this work Tanner EDA is used for the comparison of all adders - Ripple carry adder, Bitwise carry select adder, Square root carry select adder, proposed carry select adder using BEC. Nº de ref. del artículo: 9783656885849
Cantidad disponible: 1 disponibles