Assuming only basic algebra and Galois theory, the book develops the method of "algebraic patching" to realize finite groups and, more generally, to solve finite split embedding problems over fields. The method succeeds over rational function fields of one variable over "ample fields". Among others, it leads to the solution of two central results in "Field Arithmetic": (a) The absolute Galois group of a countable Hilbertian pac field is free on countably many generators; (b) The absolute Galois group of a function field of one variable over an algebraically closed field $C$ is free of rank equal to the cardinality of $C$.
"Sinopsis" puede pertenecer a otra edición de este libro.
Moshe Jarden was born in 1942 in Tel Aviv, Israel. In 1970 he received his Ph.D in Mathematics from the Hebrew University of Jerusalem having Hillel Furstenberg as his thesis advisor. He spent three years (1972-1974) at the Mathematisches Institut of Heidelberg with Peter Roquette as his mentor and habilitated there in 1972. The years he spent in Heidelberg laid the foundation to a long termed cooperation with German mathematicians, especially with Peter Roquette, Wulf-Dieter Geyer, Gerhard Frey, and Juergen Ritter. As a token to his achievements in Mathematics and his fruitful cooperation with German mathematicians the Alexander von Humboldt Foundation granted Jarden in 2001 the L. Meithner-A.v.Humboldt Prize. In the autumn of 1974 Jarden returned to Israel and joined the School of Mathematics of Tel Aviv University, where he became a full professor in 1982 and the incumbent of the Cissie and Aaron Beare chair in Algebra and Number Theory in 1998. Jointly with Michael Fried, Jarden published the book "Field Arithmetic" in the series Ergebnisse der Mathematik und ihrer Grenzgebiete of Springer. He won the Landau Prize for the publication of that book. Moshe Jarden inherited his love to Mathematics from his father Dr. Dov Jarden who was both a Hebrew linguistic and a mathematician. He is married to Rina, has three daughters Kmeha, Hemyat, and Uri, and a son Guy. He also has thirteen grandchildren and lives in Mevasseret Zion, near Jerusalem.
Assuming only basic algebra and Galois theory, the book develops the method of "algebraic patching" to realize finite groups and, more generally, to solve finite split embedding problems over fields. The method succeeds over rational function fields of one variable over "ample fields". Among others, it leads to the solution of two central results in "Field Arithmetic": (a) The absolute Galois group of a countable Hilbertian pac field is free on countably many generators; (b) The absolute Galois group of a function field of one variable over an algebraically closed field $C$ is free of rank equal to the cardinality of $C$.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20125135-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Assuming only basic algebra and Galois theory, the book develops the method of "algebraic patching" to realize finite groups and, more generally, to solve finite split embedding problems over fields. The method succeeds over rational function fields of one variable over "ample fields". Among others, it leads to the solution of two central results in "Field Arithmetic": (a) The absolute Galois group of a countable Hilbertian pac field is free on countably many generators; (b) The absolute Galois group of a function field of one variable over an algebraically closed field $C$ is free of rank equal to the cardinality of $C$. Assuming only basic algebra and Galois theory, the book develops the method of "algebraic patching" to realize finite groups and, more generally, to solve finite split embedding problems over fields. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783642266515
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020222547
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 20125135
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642266515_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783642266515
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 316. Nº de ref. del artículo: 2658568149
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Assuming only basic algebra and Galois theory, the book develops the method of 'algebraic patching' to realize finite groups and, more generally, to solve finite split embedding problems over fields. The method succeeds over rational function fields of one variable over 'ample fields'. Among others, it leads to the solution of two central results in 'Field Arithmetic': (a) The absolute Galois group of a countable Hilbertian pac field is free on countably many generators; (b) The absolute Galois group of a function field of one variable over an algebraically closed field $C$ is free of rank equal to the cardinality of $C$. 316 pp. Englisch. Nº de ref. del artículo: 9783642266515
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 20125135-n
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 316 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 50991626
Cantidad disponible: 4 disponibles