Artículos relacionados a Partial Differential Equations with Random Initial...

Partial Differential Equations with Random Initial Data - Tapa blanda

 
9783639704761: Partial Differential Equations with Random Initial Data

Sinopsis

We study the limiting distributions of the solution of fractional diffusion-wave systems with subordinated Gaussian random initial data. In our work, we use homogeneous random field to model the initial data and apply the spectral representation method and multiple Wiener integrals to studying the covariance matrix functions of the random solution. The limiting distributions of the solution are obtained from different viewpoints including macroscopic scales and microscopic scales. When the initial data is weakly dependent, our results can be thought of as a generalized central limit theorem. There are two key points for this new result. The first one is that the initial data is modeled by two cross-correlated random fields, which is analyzed by the method of Feynman diagrams. Second, the limit of the solution under the macroscopic/microscopic coordinate systems is represented by a series of mutually independent Gaussian random fields. When the initial data is long-range dependent. We found a competition relationship between the effects coming from the components of the random initial data, i.e., the limiting distribution of the solution is determined by one of the components.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

We study the limiting distributions of the solution of fractional diffusion-wave systems with subordinated Gaussian random initial data. In our work, we use homogeneous random field to model the initial data and apply the spectral representation method and multiple Wiener integrals to studying the covariance matrix functions of the random solution. The limiting distributions of the solution are obtained from different viewpoints including macroscopic scales and microscopic scales. When the initial data is weakly dependent, our results can be thought of as a generalized central limit theorem. There are two key points for this new result. The first one is that the initial data is modeled by two cross-correlated random fields, which is analyzed by the method of Feynman diagrams. Second, the limit of the solution under the macroscopic/microscopic coordinate systems is represented by a series of mutually independent Gaussian random fields. When the initial data is long-range dependent. We found a competition relationship between the effects coming from the components of the random initial data, i.e., the limiting distribution of the solution is determined by one of the components.

Biografía del autor

Gi-Ren Liu received his Ph.D. degree from National Taiwan University in 2013. Currently, he served as a post-doctoral fellow in Department of Computer Science, National Chiao Tung University. His current research interests include queuing theory, Markov decision processes and their applications on personal communications services.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Partial Differential Equations with Random Initial...

Imagen del vendedor

Gi-Ren Liu
Publicado por Scholars\' Press, 2014
ISBN 10: 3639704762 ISBN 13: 9783639704761
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 4998889

Contactar al vendedor

Comprar nuevo

EUR 55,14
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Gi-Ren Liu
Publicado por Scholars' Press Feb 2014, 2014
ISBN 10: 3639704762 ISBN 13: 9783639704761
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We study the limiting distributions of the solution of fractional diffusion-wave systems with subordinated Gaussian random initial data. In our work, we use homogeneous random field to model the initial data and apply the spectral representation method and multiple Wiener integrals to studying the covariance matrix functions of the random solution. The limiting distributions of the solution are obtained from different viewpoints including macroscopic scales and microscopic scales. When the initial data is weakly dependent, our results can be thought of as a generalized central limit theorem. There are two key points for this new result. The first one is that the initial data is modeled by two cross-correlated random fields, which is analyzed by the method of Feynman diagrams. Second, the limit of the solution under the macroscopic/microscopic coordinate systems is represented by a series of mutually independent Gaussian random fields. When the initial data is long-range dependent. We found a competition relationship between the effects coming from the components of the random initial data, i.e., the limiting distribution of the solution is determined by one of the components. 148 pp. Englisch. Nº de ref. del artículo: 9783639704761

Contactar al vendedor

Comprar nuevo

EUR 67,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Gi-Ren Liu
Publicado por Scholars' Press, 2014
ISBN 10: 3639704762 ISBN 13: 9783639704761
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - We study the limiting distributions of the solution of fractional diffusion-wave systems with subordinated Gaussian random initial data. In our work, we use homogeneous random field to model the initial data and apply the spectral representation method and multiple Wiener integrals to studying the covariance matrix functions of the random solution. The limiting distributions of the solution are obtained from different viewpoints including macroscopic scales and microscopic scales. When the initial data is weakly dependent, our results can be thought of as a generalized central limit theorem. There are two key points for this new result. The first one is that the initial data is modeled by two cross-correlated random fields, which is analyzed by the method of Feynman diagrams. Second, the limit of the solution under the macroscopic/microscopic coordinate systems is represented by a series of mutually independent Gaussian random fields. When the initial data is long-range dependent. We found a competition relationship between the effects coming from the components of the random initial data, i.e., the limiting distribution of the solution is determined by one of the components. Nº de ref. del artículo: 9783639704761

Contactar al vendedor

Comprar nuevo

EUR 67,90
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gi-Ren Liu
Publicado por Scholars' Press Feb 2014, 2014
ISBN 10: 3639704762 ISBN 13: 9783639704761
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -We study the limiting distributions of the solution of fractional diffusion-wave systems with subordinated Gaussian random initial data. In our work, we use homogeneous random field to model the initial data and apply the spectral representation method and multiple Wiener integrals to studying the covariance matrix functions of the random solution. The limiting distributions of the solution are obtained from different viewpoints including macroscopic scales and microscopic scales. When the initial data is weakly dependent, our results can be thought of as a generalized central limit theorem. There are two key points for this new result. The first one is that the initial data is modeled by two cross-correlated random fields, which is analyzed by the method of Feynman diagrams. Second, the limit of the solution under the macroscopic/microscopic coordinate systems is represented by a series of mutually independent Gaussian random fields. When the initial data is long-range dependent. We found a competition relationship between the effects coming from the components of the random initial data, i.e., the limiting distribution of the solution is determined by one of the components.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 148 pp. Englisch. Nº de ref. del artículo: 9783639704761

Contactar al vendedor

Comprar nuevo

EUR 67,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito