Artículos relacionados a Chromatic Polynomials and Chromaticity of Graphs and...

Chromatic Polynomials and Chromaticity of Graphs and Hypergraphs: Chromaticity of Jahnagir Graph: h-Chromaticity of Linear Uniform Hypercycles: Cyclomatic Number of Hypergraphs - Tapa blanda

 
9783639256123: Chromatic Polynomials and Chromaticity of Graphs and Hypergraphs: Chromaticity of Jahnagir Graph: h-Chromaticity of Linear Uniform Hypercycles: Cyclomatic Number of Hypergraphs

Sinopsis

For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,λ), to be the number of proper colourings of a map M. It turns out that P(M,λ) is a polynomial in λ¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialVDM Verlag Dr. Müller
  • Año de publicación2010
  • ISBN 10 3639256123
  • ISBN 13 9783639256123
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas76
  • Contacto del fabricanteno disponible

Comprar usado

Octavo, ix, 62 pages. In Very Good...
Ver este artículo

EUR 40,46 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Chromatic Polynomials and Chromaticity of Graphs and...

Imagen de archivo

Bhatti, Akhlaq
Publicado por VDM Verlag Dr. Muller, Lahore, 2010
ISBN 10: 3639256123 ISBN 13: 9783639256123
Antiguo o usado Softcover

Librería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. Octavo, ix, 62 pages. In Very Good condition. Paperback binding. Off-white covers show extremely mild wear exteriorly. Black lettering to pictorial front. Text block has minimal wear to the edges. Illustrated. NOTE: Shelved in Netdesk office, Case #2 - New Ephemera Box #6. 1377343. FP New Rockville Stock. Nº de ref. del artículo: 1377343

Contactar al vendedor

Comprar usado

EUR 16,99
Convertir moneda
Gastos de envío: EUR 40,46
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Akhlaq Bhatti
Publicado por VDM Verlag Dr. Müller, 2010
ISBN 10: 3639256123 ISBN 13: 9783639256123
Nuevo Kartoniert / Broschiert
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti AkhlaqMr. Akhlaq Ahmad Bhatti received his MS and M.Phil degrees in Mathematics from Govt. College University Lahore Pakistan. In Nov 2007 he was amongst first three group of students who defended successfully their PhD the. Nº de ref. del artículo: 4971459

Contactar al vendedor

Comprar nuevo

EUR 39,24
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito