For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,?), to be the number of proper colourings of a map M. It turns out that P(M,?) is a polynomial in ?¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.
"Sinopsis" puede pertenecer a otra edición de este libro.
For a century, one of the most famous problems in mathematics was to prove the Four-colour theorem. In a paper Birkhof proposed a way of tackling the four-colour problem by introducing a function P(M,λ), to be the number of proper colourings of a map M. It turns out that P(M,λ) is a polynomial in λ¸ called the chromatic polynomial of M. In 1968, Read asked: What is the necessary and sufficient condition for two graphs to be chromatically equivalent; i.e. to have same chromatic polynomial? A graphs is said to be unique if no other graphs share its chromatic polynomial. The question of chromatic equivalence and uniqueness is termed the chromaticity of graphs. In chapter 5 we will prove that the Jahangir graph is chromatically unique for p = 3. Dohmen and Tomescu initiated and discussed the study of chromaticity of linear uniform hypergraphs. In chapter 6, we will generalize the result proved by Tomescu related to the chromaticity of two linear uniform h-hypercycles having a path in common. Also, we will prove an important result which tells us that the number of cycles of a linear hypergraph is bounded below by its cyclomatic number.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America
Softcover. Octavo, ix, 62 pages. In Very Good condition. Paperback binding. Off-white covers show extremely mild wear exteriorly. Black lettering to pictorial front. Text block has minimal wear to the edges. Illustrated. NOTE: Shelved in Netdesk office, Case #2 - New Ephemera Box #3. 1377343. FP New Rockville Stock. Nº de ref. del artículo: 1377343
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 76. Nº de ref. del artículo: 26128752327
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 76 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 131802392
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 76. Nº de ref. del artículo: 18128752333
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bhatti AkhlaqMr. Akhlaq Ahmad Bhatti received his MS and M.Phil degrees in Mathematics from Govt. College University Lahore Pakistan. In Nov 2007 he was amongst first three group of students who defended successfully their PhD the. Nº de ref. del artículo: 4971459
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Chromatic Polynomials and Chromaticity of Graphs and Hypergraphs | Chromaticity of Jahnagir Graph: h-Chromaticity of Linear Uniform Hypercycles: Cyclomatic Number of Hypergraphs | Akhlaq Bhatti | Taschenbuch | Englisch | VDM Verlag Dr. Müller | EAN 9783639256123 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Nº de ref. del artículo: 101118502
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA80036392561236
Cantidad disponible: 1 disponibles