Multi-stage Stochastic Programming (MSP) has many practical applications for solving problems whose current resolution must be made while taking into account future uncertainty. A variety of methods exist for solving stochastic programming problems, among them are: direct methods such as simplex and interior point methods, and decomposition methods such as ACCPM (Analytic Center Cutting Plane Method), Dantzig-Wolfe and Benders decompositions, and L-shaped method. Moreover, approximation methods such as Monte Carlo simulation, as well as combinatorial heuristics are employed to solve this class of problems. In addition to extensive discussion on methods for solving multi-stage stochastic program, this book addresses two important production planning challenges namely, stochastic capacity planning; and stochastic in-house production and outsourcing planning. Problems are formulated as large-scale, Multi-stage Stochastic programs and solved implementing an innovative two-level, interior-point decomposition algorithm based on ACCPM.
"Sinopsis" puede pertenecer a otra edición de este libro.
Multi-stage Stochastic Programming (MSP) has many practical applications for solving problems whose current resolution must be made while taking into account future uncertainty. A variety of methods exist for solving stochastic programming problems, among them are: direct methods such as simplex and interior point methods, and decomposition methods such as ACCPM (Analytic Center Cutting Plane Method), Dantzig-Wolfe and Benders decompositions, and L-shaped method. Moreover, approximation methods such as Monte Carlo simulation, as well as combinatorial heuristics are employed to solve this class of problems. In addition to extensive discussion on methods for solving multi-stage stochastic program, this book addresses two important production planning challenges namely, stochastic capacity planning; and stochastic in-house production and outsourcing planning. Problems are formulated as large-scale, Multi-stage Stochastic programs and solved implementing an innovative two-level, interior-point decomposition algorithm based on ACCPM.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,01 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 0,70 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639218800
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639218800
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rasekh LilaLila Rasekh holds a Ph. D. degree in Management Science from HEC- Montreal and McGill University in Canada. She currently works in the Decision Science team of Revenue Management at Walt Disney World. Her work focuses on. Nº de ref. del artículo: 4968204
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783639218800
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783639218800
Cantidad disponible: 10 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Multi-stage Stochastic Programming (MSP) has many practical applications for solving problems whose current resolution must be made while taking into account future uncertainty. A variety of methods exist for solving stochastic programming problems, among them are: direct methods such as simplex and interior point methods, and decomposition methods such as ACCPM (Analytic Center Cutting Plane Method), Dantzig-Wolfe and Benders decompositions, and L-shaped method. Moreover, approximation methods such as Monte Carlo simulation, as well as combinatorial heuristics are employed to solve this class of problems. In addition to extensive discussion on methods for solving multi-stage stochastic program, this book addresses two important production planning challenges namely, stochastic capacity planning; and stochastic in-house production and outsourcing planning. Problems are formulated as large-scale, Multi-stage Stochastic programs and solved implementing an innovative two-level, interior-point decomposition algorithm based on ACCPM. Nº de ref. del artículo: 9783639218800
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLING22Oct2817100451833
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79036392188096
Cantidad disponible: 1 disponibles