In the past decade, face recognition has received much attention by both the commercial and public sectors in biometrics. This book describes a highly accurate appearance-based approach for face recognition - Gabor-Boosting.The strong performance of the Gabor-Boosting face recognition is highlighted by combining three key leading edge techniques - Gabor wavelet transform, AdaBoost, Support Vector Machine (SVM). The Gabor wavelet transform is used to extract features which describe texture variations of human faces. The AdaBoost algorithm is used to select most significant features which represent different individuals. The SVM constructs a classifier with high recognition accuracy. The Gabor-Boosting face recognition is extended into multi-class classification domain. The results show that the performance is improved by applying loosely controlled face recognition in the multi-class classification. The Gabor-Boosting face recognition is robust under conditions of small number of examples and selection-bias. It gives no false detections for impostors and high acceptance rate for clients in face verification.
"Sinopsis" puede pertenecer a otra edición de este libro.
In the past decade, face recognition has received much attention by both the commercial and public sectors in biometrics. This book describes a highly accurate appearance-based approach for face recognition - Gabor-Boosting.The strong performance of the Gabor-Boosting face recognition is highlighted by combining three key leading edge techniques - Gabor wavelet transform, AdaBoost, Support Vector Machine (SVM). The Gabor wavelet transform is used to extract features which describe texture variations of human faces. The AdaBoost algorithm is used to select most significant features which represent different individuals. The SVM constructs a classifier with high recognition accuracy. The Gabor-Boosting face recognition is extended into multi-class classification domain. The results show that the performance is improved by applying loosely controlled face recognition in the multi-class classification. The Gabor-Boosting face recognition is robust under conditions of small number of examples and selection-bias. It gives no false detections for impostors and high acceptance rate for clients in face verification.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 256 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 6085489/2
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Zhou MianMian Zhou obtained his PhD in computer science at University of Reading, United Kingdom. He is currently an associate professor in the Department of Educational Technology at Tianjin Foreign Studies University. His resear. Nº de ref. del artículo: 4967810
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 256 pages. 8.66x5.91x0.57 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: 3639214609
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82936392146096
Cantidad disponible: 1 disponibles