This book frames a peer-to-peer information retrieval problem as a multi-agent framework and attacks it from an organizational perspective by exploring various adaptive, self-organizing topological organizations, designing appropriate coordination strategies, and exploiting learning techniques to create more accurate routing policy for large-scale agent organizations. In addition, a reinforcement-learning based approach is developed in this thesis to take advantage of the run-time characteristics of P2P IR systems, including environmental parameters, bandwidth usage, and historical information about past search sessions. In the learning process, agents refine their content routing policies by constructing relatively accurate routing tables based on a Q-learning algorithm. Experimental results show that this learning algorithm considerably improves the performance of distributed search sessions in P2P IR systems. The book is addressed to researchers and practitioners in information retrieval and search engine, content-based routing areas.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book frames a peer-to-peer information retrieval problem as a multi-agent framework and attacks it from an organizational perspective by exploring various adaptive, self-organizing topological organizations, designing appropriate coordination strategies, and exploiting learning techniques to create more accurate routing policy for large-scale agent organizations. In addition, a reinforcement-learning based approach is developed in this thesis to take advantage of the run-time characteristics of P2P IR systems, including environmental parameters, bandwidth usage, and historical information about past search sessions. In the learning process, agents refine their content routing policies by constructing relatively accurate routing tables based on a Q-learning algorithm. Experimental results show that this learning algorithm considerably improves the performance of distributed search sessions in P2P IR systems. The book is addressed to researchers and practitioners in information retrieval and search engine, content-based routing areas.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783639084795_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639084795
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639084795
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783639084795
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783639084795
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. This book frames a peer-to-peer information retrievalproblem as a multi-agent framework and attacks itfrom an organizational perspective by exploringvarious adaptive, self-organizing topologicalorganizations, designing appropriatecoordination strategies, an. Nº de ref. del artículo: 4955989
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - This book frames a peer-to-peer information retrievalproblem as a multi-agent framework and attacks itfrom an organizational perspective by exploringvarious adaptive, self-organizing topologicalorganizations, designing appropriatecoordination strategies, and exploiting learningtechniques to create more accurate routing policy forlarge-scale agent organizations. In addition, areinforcement-learning based approach is developed inthis thesis to take advantage of the run-timecharacteristics of P2P IR systems, includingenvironmental parameters, bandwidth usage, andhistorical information about past search sessions. Inthe learning process, agents refine their contentrouting policies by constructing relatively accuraterouting tables based on a Q-learning algorithm.Experimental results show that this learningalgorithm considerably improves the performance ofdistributed search sessions in P2P IR systems.The book is addressed to researchers andpractitioners in information retrieval and searchengine, content-based routing areas. Nº de ref. del artículo: 9783639084795
Cantidad disponible: 2 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783639084795
Cantidad disponible: 2 disponibles