We explore various optimization problems which appear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions. We present the Nelder-Mead algorithms on Lie groups and describe its application to medical image registration. A widely used approach to image registration involves finding the transformation that maximizes the mutual information between two images, with the transformation restricted to be either rigid-body (i.e., belonging to SE(3)) or volume-preserving (i.e., belonging to SL(3)). We present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the transformation groups SL(3), SE(3), and its various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying transformation groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometrics algorithm.
"Sinopsis" puede pertenecer a otra edición de este libro.
We explore various optimization problems which appear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions. We present the Nelder-Mead algorithms on Lie groups and describe its application to medical image registration. A widely used approach to image registration involves finding the transformation that maximizes the mutual information between two images, with the transformation restricted to be either rigid-body (i.e., belonging to SE(3)) or volume-preserving (i.e., belonging to SL(3)). We present coordinate-invariant, geometric versions of the Nelder-Mead optimization algorithm on the transformation groups SL(3), SE(3), and its various subgroups, that are applicable to a wide class of image registration problems. Because the algorithms respect the geometric structure of the underlying transformation groups, they are numerically more stable, and exhibit better convergence properties than existing local coordinate-based algorithms. Experimental results demonstrate the improved convergence properties of our geometrics algorithm.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 0,65 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639032260
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783639032260_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639032260
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783639032260
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783639032260
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. We explore various optimization problems whichappear in computer vision and image processing. By exploiting the geometric structure of the underlying search spaces, we develop more efficient and robust ways to find optimal solutions.We present the Nelder-Me. Nº de ref. del artículo: 4951089
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020185434
Cantidad disponible: Más de 20 disponibles