Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future.
"Sinopsis" puede pertenecer a otra edición de este libro.
Tina Loll holds a Diploma in Civil Engineering from the University of Duisburg-Essen and a Diploma in Business Administration and Engineering from the University of Bochum. From 2007 to 2011 she worked as a research assistant at the Institute of Statistics and Econometrics of the University of Hamburg and received a Doctor of Economics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 40,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 23,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Fundus-Online GbR Borkert Schwarz Zerfaß, Berlin, Alemania
Originalhardcover. Condición: Sehr gut. 138 S. : graph. Darst. Ein tadelloses Exemplar. - Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future. ISBN 9783631621875 Sprache: Englisch Gewicht in Gramm: 288. Nº de ref. del artículo: 1083716
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future. 140 pp. Englisch. Nº de ref. del artículo: 9783631621875
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Forecasting Economic Time Series using Locally Stationary ProcessesStationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be. Nº de ref. del artículo: 117177300
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future. 140 pp. Englisch. Nº de ref. del artículo: 9783631621875
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Stationarity has always played an important part in forecasting theory. However, some economic time series show time-varying autocovariances. The question arises whether forecasts can be improved using models that capture such a time-varying second-order structure. One possibility is given by autoregressive models with time-varying parameters. The author focuses on the development of a forecasting procedure for these processes and compares this approach to classical forecasting methods by means of Monte Carlo simulations. An evaluation of the proposed procedure is given by its application to futures prices and the Dow Jones index. The approach turns out to be superior to the classical methods if the sample sizes are large and the forecasting horizons do not range too far into the future. Nº de ref. del artículo: 9783631621875
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. Forecasting Economic Time Series using Locally Stationary Processes | A New Approach with Applications | Tina Loll | Buch | Englisch | 2012 | Peter Lang | EAN 9783631621875 | Verantwortliche Person für die EU: Lang, Peter GmbH, Gontardstr. 11, 10178 Berlin, r[dot]boehm-korff[at]peterlang[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 106625593
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Very Good. Very Good. book. Nº de ref. del artículo: ERICA82936316218766
Cantidad disponible: 1 disponibles