In the first volume of The Arithmetic of Elliptic Curves, the author presented the basic theory culminating in two fundamental global results, the Mordell-Weil theorem on the finite generation of the group of rational points and Siegel's theorem on the finiteness of the set of integral points. This second volume continues the study of elliptic curves by presenting six important, somewhat more specialized topics: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. N ron models, Kodaira-N ron classification of special fibres, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. N ron's theory of canonical local height functions.
"Sinopsis" puede pertenecer a otra edición de este libro.
In the first volume of The Arithmetic of Elliptic Curves, the author presented the basic theory culminating in two fundamental global results, the Mordell-Weil theorem on the finite generation of the group of rational points and Siegel's theorem on the finiteness of the set of integral points. This second volume continues the study of elliptic curves by presenting six important, somewhat more specialized topics: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. N ron models, Kodaira-N ron classification of special fibres, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. N ron's theory of canonical local height functions.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,96 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Alemania
Broschur, 8°. Condición: Wie neu. 538 S. Buch ist neu, aus priv. Vorbesitz, ungelesen. -----Inhalt:. In the first volume of The Arithmetic of Elliptic Curves, the author presented the basic theory culminating in two fundamental global results, the Mordell-Weil theorem on the finite generation of the group of rational points and Siegel's theorem on the finiteness of the set of integral points. This second volume continues the study of elliptic curves by presenting six important, somewhat more specialized topics: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Néron models, Kodaira-N ron classification of special fibres, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Néron's theory of canonical local height functions. From the contents: Preface Introduction Elliptic and Modular Functions Complex Multiplication Elliptic Surfaces The Neron Model Elliptic Curves over Complete Fields Local Height Functions Appendix A: Some Useful Tables Notes on Exercises References List of Notation Index. ISBN: 9783540943280 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 740. Nº de ref. del artículo: 669222
Cantidad disponible: 1 disponibles