The main theme of this book is the stability of nonautonomous di?erential equations, with emphasis on the study of the existence and smoothness of invariant manifolds, and the Lyapunov stability of solutions. We always c- sider a nonuniform exponential behavior of the linear variational equations, given by the existence of a nonuniform exponential contraction or a nonu- form exponential dichotomy. Thus, the results hold for a much larger class of systems than in the “classical” theory of exponential dichotomies. Thedeparturepointofthebookisourjointworkontheconstructionof- variant manifolds for nonuniformly hyperbolic trajectories of nonautonomous di?erential equations in Banach spaces. We then consider several related - velopments,concerningtheexistenceandregularityoftopologicalconjugacies, the construction of center manifolds, the study of reversible and equivariant equations, and so on. The presentation is self-contained and intends to c- vey the full extent of our approach as well as its uni?ed character. The book contributes towards a rigorous mathematical foundation for the theory in the in?nite-dimensional setting, also with the hope that it may lead to further developments in the ?eld. The exposition is directed to researchers as well as graduate students interested in di?erential equations and dynamical systems, particularly in stability theory.
"Sinopsis" puede pertenecer a otra edición de este libro.
Luis Barreira is a Full Professor of Mathematics at Instituto Superior Técnico, Lisbon and a member of the Center for Mathematical Analysis, Geometry, and Dynamical Systems. He obtained his PhD from the Pennsylvania State University in 1996. In 2007 he has been awarded the Gulbenkian Science Prize.
Claudia Valls is an Invited Assistant Professor at Instituto Superior Técnico, Lisbon and a Postdoctoral Fellow at the Center for Mathematical Analysis, Geometry, and Dynamical Systems, of which she is also a member. She obtained her PhD from the Universitat de Barcelona in 1999.
Main theme of this volume is the stability of nonautonomous differential equations, with emphasis on the Lyapunov stability of solutions, the existence and smoothness of invariant manifolds, the construction and regularity of topological conjugacies, the study of center manifolds, as well as their reversibility and equivariance properties. Most results are obtained in the infinite-dimensional setting of Banach spaces. Furthermore, the linear variational equations are always assumed to possess a nonuniform exponential behavior, given either by the existence of a nonuniform exponential contraction or a nonuniform exponential dichotomy. The presentation is self-contained and has unified character. The volume contributes towards a rigorous mathematical foundation of the theory in the infinite-dimension setting, and may lead to further developments in the field. The exposition is directed to researchers as well as graduate students interested in differential equations and dynamical systems, particularly in stability theory.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 10,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
XIV, 285 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Gestempelt. Lecture Notes in Mathematics, Vol. 1926 Sprache: Englisch. Nº de ref. del artículo: 4013DB
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-A-013-02524
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-248660
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. xiv + 285. Nº de ref. del artículo: 7546821
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xiv + 285 1st Edition. Nº de ref. del artículo: 26301082
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. xiv + 285. Nº de ref. del artículo: 18301072
Cantidad disponible: 4 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New.SoftCover International edition. Different ISBN and Cover image but contents are same as US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-404317
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540747741_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main theme of this book is the stability of nonautonomous di erential equations, with emphasis on the study of the existence and smoothness of invariant manifolds, and the Lyapunov stability of solutions. We always c- sider a nonuniform exponential behavior of the linear variational equations, given by the existence of a nonuniform exponential contraction or a nonu- form exponential dichotomy. Thus, the results hold for a much larger class of systems than in the 'classical' theory of exponential dichotomies. Thedeparturepointofthebookisourjointworkontheconstructionof- variant manifolds for nonuniformly hyperbolic trajectories of nonautonomous di erential equations in Banach spaces. We then consider several related - velopments,concerningtheexistenceandregularityoftopologicalconjugacies, the construction of center manifolds, the study of reversible and equivariant equations, and so on. The presentation is self-contained and intends to c- vey the full extent of our approach as well as its uni ed character. The book contributes towards a rigorous mathematical foundation for the theory in the in nite-dimensional setting, also with the hope that it may lead to further developments in the eld. The exposition is directed to researchers as well as graduate students interested in di erential equations and dynamical systems, particularly in stability theory. 308 pp. Englisch. Nº de ref. del artículo: 9783540747741
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The main theme of this book is the stability of nonautonomous di erential equations, with emphasis on the study of the existence and smoothness of invariant manifolds, and the Lyapunov stability of solutions. We always c- sider a nonuniform exponential behavior of the linear variational equations, given by the existence of a nonuniform exponential contraction or a nonu- form exponential dichotomy. Thus, the results hold for a much larger class of systems than in the 'classical' theory of exponential dichotomies. Thedeparturepointofthebookisourjointworkontheconstructionof- variant manifolds for nonuniformly hyperbolic trajectories of nonautonomous di erential equations in Banach spaces. We then consider several related - velopments,concerningtheexistenceandregularityoftopologicalconjugacies, the construction of center manifolds, the study of reversible and equivariant equations, and so on. The presentation is self-contained and intends to c- vey the full extent of our approach as well as its uni ed character. The book contributes towards a rigorous mathematical foundation for the theory in the in nite-dimensional setting, also with the hope that it may lead to further developments in the eld. The exposition is directed to researchers as well as graduate students interested in di erential equations and dynamical systems, particularly in stability theory. Nº de ref. del artículo: 9783540747741
Cantidad disponible: 1 disponibles