Artículos relacionados a GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION...

GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION - SECOND CORRECTED EDITION: Vol 2 (Algorithms and Combinatorics) - Tapa blanda

 
9783540567400: GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION - SECOND CORRECTED EDITION: Vol 2 (Algorithms and Combinatorics)

Sinopsis

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.

Reseña del editor

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica#1

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
362 Seiten Das hier angebotene...
Ver este artículo

EUR 9,95 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION...

Imagen del vendedor

Grötschel, Martin, Laszlo Lovasz and Alexander Schrijver:
Publicado por Springer, 1993
ISBN 10: 3540567402 ISBN 13: 9783540567400
Antiguo o usado gebundene Ausgabe

Librería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

gebundene Ausgabe. Condición: Gut. 2. Auflage;. 362 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Einband folienkaschiert. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 750. Nº de ref. del artículo: 2220370

Contactar al vendedor

Comprar usado

EUR 110,00
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Grötschel, Martin /Lovasz, Laszlo /Schrijver, Alexander
Publicado por Springer Bln, 1993
ISBN 10: 3540567402 ISBN 13: 9783540567400
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Gut. Zustand: Gut | Seiten: 374 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 347996/203

Contactar al vendedor

Comprar usado

EUR 178,18
Convertir moneda
Gastos de envío: GRATIS
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito