Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
"Sinopsis" puede pertenecer a otra edición de este libro.
GIUSEPPE DA PRATO was born in La Spezia in 1936. Having graduated in Physics in 1960 from the University of Rome, he became full professor of Mathematics in 1968 and taught in Rome and in Trento. Since 1979 he has been Professor of Mathematical Analysis at the Scuola Normale Superiore di Pisa.
The scientific activity of Giuseppe Da Prato concerns infinite-dimensional analysis and partial differential stochastic equations (existence, uniqueness, invariant measures, ergodicity), with applications to optimal stochastic control.
Giuseppe Da Prato is the author of 5 other books, some co-authored with other international specialists, on control theory, stochastic differential equations and infinite dimensional Kolmogorov equations, and of more than 250 papers in international scientific journals.
In this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction for an audience knowing basic functional analysis and measure theory but not necessarily probability theory to analysis in a separable Hilbert space of infinite dimension.
Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,38 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-82477
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 228 Illus. Nº de ref. del artículo: 7592607
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 228. Nº de ref. del artículo: 26288064
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 228. Nº de ref. del artículo: 18288074
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior. 228 pp. Englisch. Nº de ref. del artículo: 9783540290209
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction - for an audience knowing basic functional analysis and measure theory but not necessarily probability theory - to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way.These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior. Nº de ref. del artículo: 9783540290209
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540290209_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Based on well-known lectures given at SNS Pisa- The author is a world leader in the field of infinite dimensional analysis, and the teacher of many other leaders. Has published very little in book for thus far- Contains new material on dy. Nº de ref. del artículo: 4887153
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 4033061-n
Cantidad disponible: Más de 20 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-266449
Cantidad disponible: 1 disponibles