Formal specifications were first used in the description of program ming languages because of the central role that languages and their compilers play in causing a machine to perform the computations required by a programmer. In a relatively short time, specification notations have found their place in industry and are used for the description of a wide variety of software and hardware systems. A formal method - like VDM - must offer a mathematically-based specification language. On this language rests the other key element of the formal method: the ability to reason about a specification. Proofs can be empioyed in reasoning about the potential behaviour of a system and in the process of showing that the design satisfies the specification. The existence of a formal specification is a prerequisite for the use of proofs; but this prerequisite is not in itself sufficient. Both proofs and programs are large formal texts. Would-be proofs may therefore contain errors in the same way as code. During the difficult but inevitable process of revising specifications and devel opments, ensuring consistency is a major challenge. It is therefore evident that another requirement - for the successful use of proof techniques in the development of systems from formal descriptions - is the availability of software tools which support the manipu lation of large bodies of formulae and help the user in the design of the proofs themselves.
"Sinopsis" puede pertenecer a otra edición de este libro.
Formal specifications were first used in the description of program ming languages because of the central role that languages and their compilers play in causing a machine to perform the computations required by a programmer. In a relatively short time, specification notations have found their place in industry and are used for the description of a wide variety of software and hardware systems. A formal method - like VDM - must offer a mathematically-based specification language. On this language rests the other key element of the formal method: the ability to reason about a specification. Proofs can be empioyed in reasoning about the potential behaviour of a system and in the process of showing that the design satisfies the specification. The existence of a formal specification is a prerequisite for the use of proofs; but this prerequisite is not in itself sufficient. Both proofs and programs are large formal texts. Would-be proofs may therefore contain errors in the same way as code. During the difficult but inevitable process of revising specifications and devel opments, ensuring consistency is a major challenge. It is therefore evident that another requirement - for the successful use of proof techniques in the development of systems from formal descriptions - is the availability of software tools which support the manipu lation of large bodies of formulae and help the user in the design of the proofs themselves.
Proof in VDM: A Practitioners' Guide is a textbook and manual on the practical aspects of using and constructing proofs in the specification and development of computing systems. Many introductory courses on formal techniques are, by their nature, unable to cover the pragmatics of proof. Practitioners competent in writing and comprehending formal specifications are therefore often at a loss when it comes to conducting the relevant proofs. Proof in VDM: A Practitioners' Guide addresses that need. The reader is guided through the elements of proof construction with the help of numerous worked examples. The techniques can be applied to specification and development in a range of formalisms, and are illustrated using the logic and the basic data types of the VDM specification language. The construction of theorems and proofs from actual specifications and refinements is also described, and a detailed case study, including several refinement steps, shows how formal proof can be used in practice. In addition, the book contains a directory of axioms and formally proved theorems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 11,99 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Ammareal, Morangis, Francia
Softcover. Condición: Bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Salissures sur la tranche. Edition 1994. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slight signs of wear on the cover. Stains on the edge. Edition 1994. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: E-505-683
Cantidad disponible: 1 disponibles
Librería: Webbooks, Wigtown, Wigtown, Reino Unido
Paperback. Condición: Near Fine. No Jacket. First Edition. Clean bright tight copy that appears unread. This is a heavy paperback and extra shipping will be requested if ordered from outside the UK. C00002725. Nº de ref. del artículo: C00002725
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Formal specifications were first used in the description of program ming languages because of the central role that languages and their compilers play in causing a machine to perform the computations required by a programmer. In a relatively short time, specification notations have found their place in industry and are used for the description of a wide variety of software and hardware systems. A formal method - like VDM - must offer a mathematically-based specification language. On this language rests the other key element of the formal method: the ability to reason about a specification. Proofs can be empioyed in reasoning about the potential behaviour of a system and in the process of showing that the design satisfies the specification. The existence of a formal specification is a prerequisite for the use of proofs; but this prerequisite is not in itself sufficient. Both proofs and programs are large formal texts. Would-be proofs may therefore contain errors in the same way as code. During the difficult but inevitable process of revising specifications and devel opments, ensuring consistency is a major challenge. It is therefore evident that another requirement - for the successful use of proof techniques in the development of systems from formal descriptions - is the availability of software tools which support the manipu lation of large bodies of formulae and help the user in the design of the proofs themselves. Nº de ref. del artículo: 9783540198130
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540198130_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4884300
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540198130
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783540198130
Cantidad disponible: 10 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Formal specifications were first used in the description of program ming languages because of the central role that languages and their compilers play in causing a machine to perform the computations required by a programmer. In a relatively short time, specification notations have found their place in industry and are used for the description of a wide variety of software and hardware systems. A formal method - like VDM - must offer a mathematically-based specification language. On this language rests the other key element of the formal method: the ability to reason about a specification. Proofs can be empioyed in reasoning about the potential behaviour of a system and in the process of showing that the design satisfies the specification. The existence of a formal specification is a prerequisite for the use of proofs; but this prerequisite is not in itself sufficient. Both proofs and programs are large formal texts. Would-be proofs may therefore contain errors in the same way as code. During the difficult but inevitable process of revising specifications and devel opments, ensuring consistency is a major challenge. It is therefore evident that another requirement - for the successful use of proof techniques in the development of systems from formal descriptions - is the availability of software tools which support the manipu lation of large bodies of formulae and help the user in the design of the proofs themselves.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 380 pp. Englisch. Nº de ref. del artículo: 9783540198130
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 362 pages. 9.00x6.00x0.75 inches. In Stock. Nº de ref. del artículo: x-354019813X
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Formal specifications were first used in the description of program ming languages because of the central role that languages and their compilers play in causing a machine to perform the computations required by a programmer. In a relatively short time, specification notations have found their place in industry and are used for the description of a wide variety of software and hardware systems. A formal method - like VDM - must offer a mathematically-based specification language. On this language rests the other key element of the formal method: the ability to reason about a specification. Proofs can be empioyed in reasoning about the potential behaviour of a system and in the process of showing that the design satisfies the specification. The existence of a formal specification is a prerequisite for the use of proofs; but this prerequisite is not in itself sufficient. Both proofs and programs are large formal texts. Would-be proofs may therefore contain errors in the same way as code. During the difficult but inevitable process of revising specifications and devel opments, ensuring consistency is a major challenge. It is therefore evident that another requirement - for the successful use of proof techniques in the development of systems from formal descriptions - is the availability of software tools which support the manipu lation of large bodies of formulae and help the user in the design of the proofs themselves. 380 pp. Englisch. Nº de ref. del artículo: 9783540198130
Cantidad disponible: 2 disponibles