Infinite series, and their analogues-integral representations, became funda mental tools in mathematical analysis, starting in the second half of the seven teenth century. They have provided the means for introducing into analysis all o( the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series. In the development of the theory of series two basic directions can be singled out. One is the justification of operations with infmite series, the other is the creation oftechniques for using series in the solution of mathematical and applied problems. Both directions have developed in parallel Initially progress in the first direction was significantly smaller, but, in the end, progress in the second direction has always turned out to be of greater difficulty.
The major achievements of mathematical analysis from Newton and Euler to modern applications of mathematics in physical sciences, engineering and other areas are presented in this volume. Its three parts cover the methods of analysis: representation methods, asymptotic methods and transform methods. The authors - the well-known analysts M.A. Evgrafov and M.V. Fedoryuk - have not simply presented a compendium of techniques but have stressed throughout the underlying unity of the various methods. The fundamental ideas are clearly presented and illustrated with interesting and non-trivial examples. References, together with guides to the literature, are provided for those readers who wish to go further.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,95 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Very Good. First edition, first printing, 238 pp., Hardcover, previous owner's inscription to front free endpaper else near fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1296733
Cantidad disponible: 1 disponibles
Librería: avelibro OHG, Dinkelscherben, Alemania
23,5 x 15,5 cm. Condición: Gut. 2 Bände. 238 Seiten; 255 Seiten Analysis I: Integral Representations and Asymptotic Methods: ISBN 9783540170082. Analysis II: Convex Analysis and Approximation Theory. With 21 Figures: ISBN 9783540181798. - Innen beide Bände sehr sauberer, guter Zustand. Hardcover, Pappeinbände, mit den üblichen Bibliotheks-Markierungen, Stempeln und Einträgen, innen wie außen, siehe Bilder. Einbände gut, sehr leicht angestaubt. - Serie: Encyclopaedia of Mathematical Sciences, Volume 13 + 14. B10-02-05F|A8 Sprache: Englisch Gewicht in Gramm: 1100. Nº de ref. del artículo: 82229
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75835401700815
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Cloth. Condición: Very Good. Type: Book N.B. Small plain label to ffep. Bump to head of spine. Nº de ref. del artículo: 054066
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 238 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 84305/202
Cantidad disponible: 2 disponibles