Artículos relacionados a Theta Functions: 194 (Grundlehren der Mathematischen...

Theta Functions: 194 (Grundlehren der Mathematischen Wissenschaften) - Tapa dura

 
9783540056997: Theta Functions: 194 (Grundlehren der Mathematischen Wissenschaften)

Sinopsis

The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ("Sources" [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti- fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in "On the compactification of the Siegel space", J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ("Sources" [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti- fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in "On the compactification of the Siegel space", J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Muy bueno
Berlin, Springer 1972. X, 232 p...
Ver este artículo

EUR 45,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783642653179: Theta Functions: 194 (Grundlehren der mathematischen Wissenschaften)

Edición Destacada

ISBN 10:  3642653170 ISBN 13:  9783642653179
Editorial: Springer, 2011
Tapa blanda

Resultados de la búsqueda para Theta Functions: 194 (Grundlehren der Mathematischen...

Imagen de archivo

IGUSA, Jun-Ichi
Publicado por Springer, Berlin, 1972
ISBN 10: 3540056998 ISBN 13: 9783540056997
Antiguo o usado Tapa dura

Librería: Antiquariat Renner OHG, Albstadt, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Sehr gut. Berlin, Springer 1972. X, 232 p. OCloth. with dust jacket. Grundlehren der Mathematischen Wissenschaften, 194.- Slightly stained, otherwise in very good condition. Nº de ref. del artículo: 9970

Contactar al vendedor

Comprar usado

EUR 65,00
Convertir moneda
Gastos de envío: EUR 45,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Igusa, Jun-ichi:
Publicado por Springer, Berlin, 1972
ISBN 10: 3540056998 ISBN 13: 9783540056997
Antiguo o usado Tapa dura

Librería: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

X, 232 pp., 3540056998 Sprache: Englisch Gewicht in Gramm: 510 Groß 8°, Original-Leinen mit Original-Schutzumschlag, dieser leicht angerändert, sehr gutes und innen sauberes Exemplar, Nº de ref. del artículo: 47714

Contactar al vendedor

Comprar usado

EUR 110,00
Convertir moneda
Gastos de envío: EUR 18,70
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Jun-Ichi Igusa
Publicado por Springer, 1972
ISBN 10: 3540056998 ISBN 13: 9783540056997
Antiguo o usado Tapa dura

Librería: Mooney's bookstore, Den Helder, Holanda

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Very good. Nº de ref. del artículo: 9783540056997-2-2

Contactar al vendedor

Comprar usado

EUR 140,37
Convertir moneda
Gastos de envío: EUR 24,95
De Holanda a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito