Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'.
"Sinopsis" puede pertenecer a otra edición de este libro.
Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'.
"Report on Community Research in Aeronautics"--Cover.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Studibuch, Stuttgart, Alemania
paperback. Condición: Wie neu. Seiten; 9783528076443.1 Gewicht in Gramm: 1. Nº de ref. del artículo: 714177
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 344 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 22641656/202
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
gebundene Ausgabe. Condición: Sehr gut. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Band 44. Zust: Gutes Exemplar. VIII, 331 S. Englisch 642g. Nº de ref. del artículo: 487234
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the fr. Nº de ref. del artículo: 4867132
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'. Nº de ref. del artículo: 9783528076443
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783528076443_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'. 331 pp. Englisch. Nº de ref. del artículo: 9783528076443
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Computational Fluid Dynamics research, especially for aeronautics, continues to be a rewarding and industrially relevant field of applied science in which to work. An enthusiastic international community of expert CFD workers continue to push forward the frontiers of knowledge in increasing number. Applications of CFD technology in many other sectors of industry are being successfully tackled. The aerospace industry has made significant investments and enjoys considerable benefits from the application of CFD to its products for the last two decades. This era began with the pioneering work ofMurman and others that took us into the transonic (potential flow) regime for the first time in the early 1970's. We have also seen momentous developments of the digital computer in this period into vector and parallel supercomputing. Very significant advances in all aspects of the methodology have been made to the point where we are on the threshold of calculating solutions for the Reynolds-averaged Navier-Stokes equations for complete aircraft configurations. However, significant problems and challenges remain in the areas of physical modelling, numerics and computing technology. The long term industrial requirements are captured in the U. S. Governments 'Grand Challenge' for 'Aerospace Vehicle Design' for the 1990's: 'Massively parallel computing systems and advanced parallel software technology and algorithms will enable the development and validation of multidisciplinary, coupled methods. These methods will allow the numerical simulation and design optimisation of complete aerospace vehicle systems throughout the flight envelope'.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 344 pp. Englisch. Nº de ref. del artículo: 9783528076443
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020148743
Cantidad disponible: Más de 20 disponibles