Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische
Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten
untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem
Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien,
Standardbasen für konvergente Potenzreihenringe, Approximationssätze,
Grauerts Satz über die Existenz der versellen Deformation.
Das Buch richtet sich an Studenten höherer Semester, Doktoranden und
Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an
den Universitäten in Kaiserslautern und Saarbrücken entstanden.
"Sinopsis" puede pertenecer a otra edición de este libro.
Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universitäten Saarbrücken bzw. Kaiserslautern im Fachgebiet Mathematik.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,81 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 6,76 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9783528031374
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the "commutative algebra" one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called the Weierstraft Division Theorem. The above remarks motivated us to organize the first four chapters of this book as follows. In Chapter 1 we discuss the algebra we need. Here, we assume the reader attended courses on linear algebra and abstract algebra, including some Galois theory. Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783528031374
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783528031374
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783528031374_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783528031374
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783528031374
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the 'commutative algebra' one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called the Weierstraft Division Theorem. The above remarks motivated us to organize the first four chapters of this book as follows. In Chapter 1 we discuss the algebra we need. Here, we assume the reader attended courses on linear algebra and abstract algebra, including some Galois theory. 384 pp. Englisch. Nº de ref. del artículo: 9783528031374
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 9.25x6.50x0.75 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __3528031379
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Die Autoren, Hochschuldozent Dr. Theo de Jong und Prof. Dr. Gerhard Pfister, lehren an den Universitaeten Saarbruecken bzw. Kaiserslautern im Fachgebiet Mathematik.Auf der Grundlage einer Einfuehrung in die kommutative Algebra, algebraischeGeometr. Nº de ref. del artículo: 4866089
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Algebraic geometry is, loosely speaking, concerned with the study of zero sets of polynomials (over an algebraically closed field). As one often reads in prefaces of int- ductory books on algebraic geometry, it is not so easy to develop the basics of algebraic geometry without a proper knowledge of commutative algebra. On the other hand, the commutative algebra one needs is quite difficult to understand without the geometric motivation from which it has often developed. Local analytic geometry is concerned with germs of zero sets of analytic functions, that is, the study of such sets in the neighborhood of a point. It is not too big a surprise that the basic theory of local analytic geometry is, in many respects, similar to the basic theory of algebraic geometry. It would, therefore, appear to be a sensible idea to develop the two theories simultaneously. This, in fact, is not what we will do in this book, as the 'commutative algebra' one needs in local analytic geometry is somewhat more difficult: one has to cope with convergence questions. The most prominent and important example is the substitution of division with remainder. Its substitution in local analytic geometry is called the Weierstraft Division Theorem. The above remarks motivated us to organize the first four chapters of this book as follows. In Chapter 1 we discuss the algebra we need. Here, we assume the reader attended courses on linear algebra and abstract algebra, including some Galois theory.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 400 pp. Englisch. Nº de ref. del artículo: 9783528031374
Cantidad disponible: 1 disponibles