EUR 2,36 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,36 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48005188-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Optimization Algorithms for Machine Learning: Theory and Practice 1.1. Book. Nº de ref. del artículo: BBS-9783384283375
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48005188
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. In the realm of machine learning, optimization algorithms play a pivotal role in refining models for optimal performance. These algorithms, ranging from classic gradient descent to advanced techniques like stochastic gradient descent (SGD), Adam, and RMSprop, are fundamental in minimizing the error function and enhancing model accuracy. Each algorithm offers unique advantages: SGD efficiently handles large datasets by updating parameters iteratively, while Adam adapts learning rates dynamically based on gradient variance. Theoretical understanding of optimization algorithms involves comprehending concepts like convexity, convergence criteria, and the impact of learning rate adjustments. Practically, implementing these algorithms requires tuning hyperparameters and balancing computational efficiency with model effectiveness. Moreover, recent advancements such as meta-heuristic algorithms (e.g., genetic algorithms) expand optimization capabilities for complex, non-convex problems. Mastering optimization algorithms equips practitioners with the tools to improve model robustness and scalability across diverse applications, ensuring machine learning systems perform optimally in real-world scenarios. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783384283375
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48005188
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 48005188-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the realm of machine learning, optimization algorithms play a pivotal role in refining models for optimal performance. These algorithms, ranging from classic gradient descent to advanced techniques like stochastic gradient descent (SGD), Adam, and RMSprop, are fundamental in minimizing the error function and enhancing model accuracy. Each algorithm offers unique advantages: SGD efficiently handles large datasets by updating parameters iteratively, while Adam adapts learning rates dynamically based on gradient variance.Theoretical understanding of optimization algorithms involves comprehending concepts like convexity, convergence criteria, and the impact of learning rate adjustments. Practically, implementing these algorithms requires tuning hyperparameters and balancing computational efficiency with model effectiveness. Moreover, recent advancements such as meta-heuristic algorithms (e.g., genetic algorithms) expand optimization capabilities for complex, non-convex problems.Mastering optimization algorithms equips practitioners with the tools to improve model robustness and scalability across diverse applications, ensuring machine learning systems perform optimally in real-world scenarios. 338 pp. Englisch. Nº de ref. del artículo: 9783384283375
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the realm of machine learning, optimization algorithms play a pivotal role in refining models for optimal performance. These algorithms, ranging from classic gradient descent to advanced techniques like stochastic gradient descent (SGD), Adam, and RMSprop, are fundamental in minimizing the error function and enhancing model accuracy. Each algorithm offers unique advantages: SGD efficiently handles large datasets by updating parameters iteratively, while Adam adapts learning rates dynamically based on gradient variance.Theoretical understanding of optimization algorithms involves comprehending concepts like convexity, convergence criteria, and the impact of learning rate adjustments. Practically, implementing these algorithms requires tuning hyperparameters and balancing computational efficiency with model effectiveness. Moreover, recent advancements such as meta-heuristic algorithms (e.g., genetic algorithms) expand optimization capabilities for complex, non-convex problems.Mastering optimization algorithms equips practitioners with the tools to improve model robustness and scalability across diverse applications, ensuring machine learning systems perform optimally in real-world scenarios. Nº de ref. del artículo: 9783384283375
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. In the realm of machine learning, optimization algorithms play a pivotal role in refining models for optimal performance. These algorithms, ranging from classic gradient descent to advanced techniques like stochastic gradient descent (SGD), Adam, and RMSprop, are fundamental in minimizing the error function and enhancing model accuracy. Each algorithm offers unique advantages: SGD efficiently handles large datasets by updating parameters iteratively, while Adam adapts learning rates dynamically based on gradient variance. Theoretical understanding of optimization algorithms involves comprehending concepts like convexity, convergence criteria, and the impact of learning rate adjustments. Practically, implementing these algorithms requires tuning hyperparameters and balancing computational efficiency with model effectiveness. Moreover, recent advancements such as meta-heuristic algorithms (e.g., genetic algorithms) expand optimization capabilities for complex, non-convex problems. Mastering optimization algorithms equips practitioners with the tools to improve model robustness and scalability across diverse applications, ensuring machine learning systems perform optimally in real-world scenarios. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9783384283375
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Optimization Algorithms for Machine Learning: Theory and Practice | Prashad | Taschenbuch | Paperback | Englisch | 2024 | tredition | EAN 9783384283375 | Verantwortliche Person für die EU: tredition, Heinz-Beusen-Stieg 5, 22926 Ahrensburg, support[at]tredition[dot]com | Anbieter: preigu. Nº de ref. del artículo: 129600017
Cantidad disponible: 5 disponibles