Signature forgery still represents a great challenge to financial institutions, which makes accurate signature verification inevitable. On the other hand, computer technology and information processing areas witness remarkable qualitative improvements associated with significant costs reduction. This boosted the usage of machine vision techniques. In this research, an intensive work was carried out on offline signatures to establish a system for verifying them using their digital images. Signature morphological structure was utilized to explore characteristics associated with different signatures. Signature verification algorithms were developed using binary images of signatures employing two different verification approaches, one was based on statistical techniques, while the other was based on neural networks (NN) techniques. A signature database was built by collecting 840 signatures from 66 volunteers, and was used for training the statistical and NN classifiers and subsequently for testing purposes. Research results indicated that the statistical classifiers' outcomes were highly satisfactory whereas the NN classifiers' outcomes were not of the same quality.
"Sinopsis" puede pertenecer a otra edición de este libro.
Signature forgery still represents a great challenge to financial institutions, which makes accurate signature verification inevitable. On the other hand, computer technology and information processing areas witness remarkable qualitative improvements associated with significant costs reduction. This boosted the usage of machine vision techniques. In this research, an intensive work was carried out on offline signatures to establish a system for verifying them using their digital images. Signature morphological structure was utilized to explore characteristics associated with different signatures. Signature verification algorithms were developed using binary images of signatures employing two different verification approaches, one was based on statistical techniques, while the other was based on neural networks (NN) techniques. A signature database was built by collecting 840 signatures from 66 volunteers, and was used for training the statistical and NN classifiers and subsequently for testing purposes. Research results indicated that the statistical classifiers' outcomes were highly satisfactory whereas the NN classifiers' outcomes were not of the same quality.
Mohammed S. El-Faki is a Prof. at King Faisal University. He got PhD. and MSc. from Kansas State University, and BSc. from Khartoum University. Research interests: pattern recognition, process automation, quality control, early detection of insects using mult-sensor fusion, water conservation, solar energy applications, date palm equipment design.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Signature forgery still represents a great challenge to financial institutions, which makes accurate signature verification inevitable. On the other hand, computer technology and information processing areas witness remarkable qualitative improvements associated with significant costs reduction. This boosted the usage of machine vision techniques. In this research, an intensive work was carried out on offline signatures to establish a system for verifying them using their digital images. Signature morphological structure was utilized to explore characteristics associated with different signatures. Signature verification algorithms were developed using binary images of signatures employing two different verification approaches, one was based on statistical techniques, while the other was based on neural networks (NN) techniques. A signature database was built by collecting 840 signatures from 66 volunteers, and was used for training the statistical and NN classifiers and subsequently for testing purposes. Research results indicated that the statistical classifiers' outcomes were highly satisfactory whereas the NN classifiers' outcomes were not of the same quality. 116 pp. Englisch. Nº de ref. del artículo: 9783330801547
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: El-Faki MohammedMohammed S. El-Faki is a Prof. at King Faisal University. He got PhD. and MSc. from Kansas State University, and BSc. from Khartoum University. Research interests: pattern recognition, process automation, quality con. Nº de ref. del artículo: 151242743
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 116 pages. 8.66x5.91x0.27 inches. In Stock. Nº de ref. del artículo: 3330801549
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Signature forgery still represents a great challenge to financial institutions, which makes accurate signature verification inevitable. On the other hand, computer technology and information processing areas witness remarkable qualitative improvements associated with significant costs reduction. This boosted the usage of machine vision techniques. In this research, an intensive work was carried out on offline signatures to establish a system for verifying them using their digital images. Signature morphological structure was utilized to explore characteristics associated with different signatures. Signature verification algorithms were developed using binary images of signatures employing two different verification approaches, one was based on statistical techniques, while the other was based on neural networks (NN) techniques. A signature database was built by collecting 840 signatures from 66 volunteers, and was used for training the statistical and NN classifiers and subsequently for testing purposes. Research results indicated that the statistical classifiers' outcomes were highly satisfactory whereas the NN classifiers' outcomes were not of the same quality.Books on Demand GmbH, Überseering 33, 22297 Hamburg 116 pp. Englisch. Nº de ref. del artículo: 9783330801547
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Signature forgery still represents a great challenge to financial institutions, which makes accurate signature verification inevitable. On the other hand, computer technology and information processing areas witness remarkable qualitative improvements associated with significant costs reduction. This boosted the usage of machine vision techniques. In this research, an intensive work was carried out on offline signatures to establish a system for verifying them using their digital images. Signature morphological structure was utilized to explore characteristics associated with different signatures. Signature verification algorithms were developed using binary images of signatures employing two different verification approaches, one was based on statistical techniques, while the other was based on neural networks (NN) techniques. A signature database was built by collecting 840 signatures from 66 volunteers, and was used for training the statistical and NN classifiers and subsequently for testing purposes. Research results indicated that the statistical classifiers' outcomes were highly satisfactory whereas the NN classifiers' outcomes were not of the same quality. Nº de ref. del artículo: 9783330801547
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Human Signature Verification Using Machine Vision | Statistical and neural network approaches | Mohammed El-Faki (u. a.) | Taschenbuch | 116 S. | Englisch | 2016 | Noor Publishing | EAN 9783330801547 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 107755716
Cantidad disponible: 5 disponibles