This book firstly studied that, if a graph G has a H-supermagic labeling then either disjoint union of isomorphic and non isomorphic copies of G will have a H-supermagic labeling or not? The author has studied this problem for the cycle-supermagic labelings of disjoint union of isomorphic and non isomorphic copies of some particular families of graphs namely fan graphs, wheels, ladder graphs and prism graphs etc. The author also formulated the K2-supermagic labelings of some families of alpha trees. He believe that if a graph admits H-(super)magic labeling, then disjoint union of graph also admit an H-(super)magic labeling. Secondly, he described cycle-(super)magic labelings of uniform subdivided graph. Moreover, he studied cycle-supermagic labelings for non uniform subdivisions of some particular families of graphs namely fan graphs and triangular ladders. However, he believe that if a graph has a cycle-(super)magic labeling, then its non uniform subdivided graph also has a cycle-(super)magic labeling. Lastly, he proved that fan graphs and their disjoint union admit C3-group magic total labelings over a finite abelian group A.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Syed Tahir Raza Rizvi obtained the degree of PhD in Graph Theory in 2016 from COMSATS Institute of Information Technology, Lahore, Pakistan. He was appointed as Assistant Professor of Mathematics in 2016. His research interests are Graph Labeling and Nonlinear Optics. His publications include many research papers.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book firstly studied that, if a graph G has a H-supermagic labeling then either disjoint union of isomorphic and non isomorphic copies of G will have a H-supermagic labeling or not The author has studied this problem for the cycle-supermagic labelings of disjoint union of isomorphic and non isomorphic copies of some particular families of graphs namely fan graphs, wheels, ladder graphs and prism graphs etc. The author also formulated the K2-supermagic labelings of some families of alpha trees. He believe that if a graph admits H-(super)magic labeling, then disjoint union of graph also admit an H-(super)magic labeling. Secondly, he described cycle-(super)magic labelings of uniform subdivided graph. Moreover, he studied cycle-supermagic labelings for non uniform subdivisions of some particular families of graphs namely fan graphs and triangular ladders. However, he believe that if a graph has a cycle-(super)magic labeling, then its non uniform subdivided graph also has a cycle-(super)magic labeling. Lastly, he proved that fan graphs and their disjoint union admit C3-group magic total labelings over a finite abelian group A. 104 pp. Englisch. Nº de ref. del artículo: 9783330074576
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Raza Rizvi Syed TahirDr. Syed Tahir Raza Rizvi obtained the degree of PhD in Graph Theory in 2016 from COMSATS Institute of Information Technology, Lahore, Pakistan. He was appointed as Assistant Professor of Mathematics in 2016. His. Nº de ref. del artículo: 151236499
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book firstly studied that, if a graph G has a H-supermagic labeling then either disjoint union of isomorphic and non isomorphic copies of G will have a H-supermagic labeling or not The author has studied this problem for the cycle-supermagic labelings of disjoint union of isomorphic and non isomorphic copies of some particular families of graphs namely fan graphs, wheels, ladder graphs and prism graphs etc. The author also formulated the K2-supermagic labelings of some families of alpha trees. He believe that if a graph admits H-(super)magic labeling, then disjoint union of graph also admit an H-(super)magic labeling. Secondly, he described cycle-(super)magic labelings of uniform subdivided graph. Moreover, he studied cycle-supermagic labelings for non uniform subdivisions of some particular families of graphs namely fan graphs and triangular ladders. However, he believe that if a graph has a cycle-(super)magic labeling, then its non uniform subdivided graph also has a cycle-(super)magic labeling. Lastly, he proved that fan graphs and their disjoint union admit C3-group magic total labelings over a finite abelian group A. Nº de ref. del artículo: 9783330074576
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book firstly studied that, if a graph G has a H-supermagic labeling then either disjoint union of isomorphic and non isomorphic copies of G will have a H-supermagic labeling or not The author has studied this problem for the cycle-supermagic labelings of disjoint union of isomorphic and non isomorphic copies of some particular families of graphs namely fan graphs, wheels, ladder graphs and prism graphs etc. The author also formulated the K2-supermagic labelings of some families of alpha trees. He believe that if a graph admits H-(super)magic labeling, then disjoint union of graph also admit an H-(super)magic labeling. Secondly, he described cycle-(super)magic labelings of uniform subdivided graph. Moreover, he studied cycle-supermagic labelings for non uniform subdivisions of some particular families of graphs namely fan graphs and triangular ladders. However, he believe that if a graph has a cycle-(super)magic labeling, then its non uniform subdivided graph also has a cycle-(super)magic labeling. Lastly, he proved that fan graphs and their disjoint union admit C3-group magic total labelings over a finite abelian group A.Books on Demand GmbH, Überseering 33, 22297 Hamburg 104 pp. Englisch. Nº de ref. del artículo: 9783330074576
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 104 pages. 8.66x5.91x0.24 inches. In Stock. Nº de ref. del artículo: 3330074574
Cantidad disponible: 1 disponibles
Librería: dsmbooks, Liverpool, Reino Unido
paperback. Condición: New. New. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: D8S0-3-M-3330074574-6
Cantidad disponible: 1 disponibles