Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot"ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.
"Sinopsis" puede pertenecer a otra edición de este libro.
Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot"ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved. 236 pp. Deutsch. Nº de ref. del artículo: 9783322984838
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783322984838_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved. Nº de ref. del artículo: 9783322984838
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783322984838
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4502135
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783322984838
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 252 pp. Deutsch. Nº de ref. del artículo: 9783322984838
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 252. Nº de ref. del artículo: 2697800456
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 252 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 94629591
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 252. Nº de ref. del artículo: 1897800450
Cantidad disponible: 4 disponibles