Das Anliegen dieser mathematischen Monographie ist die Zusammenfassung aller Resultate, die heutzutage vorliegen über die Existenz formaler, holomorpher oder singulärer Lösungen von singulären nicht-linearen partiellen Differentialgleichungen.
"Sinopsis" puede pertenecer a otra edición de este libro.
Prof. Raymond Gerard ist am Institut de Recherche Mathématique Alsacien an der Université Louis Pasteur in Strasbourg beschäftigt. Prof. Hidetoshi Tahara lehrt an der Sophia Universität in Tokyo.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19195586-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. We study the existence of formal power series solutions, holomorphic solutions, and singular solutions of singular non linear partial differential equations. In the first chapter, we introduce operators with regular singularities in the one variable case and we give a new simple proof of the classical Maillet's theorem for algebraic differential equations. In chapter 2, we extend this theory to operators in several variables. The chapter 3 is devoted to the study of formal and convergent power series solutions of a class of singular partial differential equations having a linear part, using the method of iteration and also Newton's method. As an appli cation of the former results, we look in chapter 4 at the local theory of differential equations of the form xy' = 1(x,y) and, in particular, we show how easy it is to find the classical results on such an equation when 1(0,0) = 0 and give also the study of such an equation when 1(0,0) #- 0 which was never given before and can be extended to equations of the form Ty = F(x, y) where T is an arbitrary vector field. The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783322802866
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020114568
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 19195586
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783322802866_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The aim of this book is to put together all the results that are known about the existence of formal, holomorphic and singular solutions of singular non linear partial differential equations. We study the existence of formal power series solutions, holomorphic solutions, and singular solutions of singular non linear partial differential equations. In the first chapter, we introduce operators with regular singularities in the one variable case and we give a new simple proof of the classical Maillet's theorem for algebraic differential equations. In chapter 2, we extend this theory to operators in several variables. The chapter 3 is devoted to the study of formal and convergent power series solutions of a class of singular partial differential equations having a linear part, using the method of iteration and also Newton's method. As an appli cation of the former results, we look in chapter 4 at the local theory of differential equations of the form xy' = 1(x,y) and, in particular, we show how easy it is to find the classical results on such an equation when 1(0,0) = 0 and give also the study of such an equation when 1(0,0) #- 0 which was never given before and can be extended to equations of the form Ty = F(x, y) where T is an arbitrary vector field. 272 pp. Englisch. Nº de ref. del artículo: 9783322802866
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4499837
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. viii + 272. Nº de ref. del artículo: 2648023215
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. viii + 272. Nº de ref. del artículo: 44792176
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. viii + 272. Nº de ref. del artículo: 1848023205
Cantidad disponible: 4 disponibles