Artículos relacionados a Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets - Tapa dura

 
9783319980737: Learning from Imbalanced Data Sets

Sinopsis

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,03 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 20,44 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030074463: Learning from Imbalanced Data Sets

Edición Destacada

ISBN 10:  3030074463 ISBN 13:  9783030074463
Editorial: Springer, 2019
Tapa blanda

Resultados de la búsqueda para Learning from Imbalanced Data Sets

Imagen de archivo

Alberto Fernandez
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. *Price HAS BEEN REDUCED by 10% until Monday, Oct. 6 (sale item)* 396 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Photos available upon request. Nº de ref. del artículo: ZB1317814

Contactar al vendedor

Comprar nuevo

EUR 111,25
Convertir moneda
Gastos de envío: EUR 20,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Alberto Fernández|Salvador García|Mikel Galar|Ronaldo C. Prati|Bartosz Krawczyk|Francisco Herrera
Publicado por Springer International Publishing, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive review of imbalanced learning widely used worldwide in many real applications,&nbspsuch as fraud detection, disease diagnosis, etcProvides the user with the required background and software tools&nbsp needed to deal. Nº de ref. del artículo: 234946118

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Fernández
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783319980737_new

Contactar al vendedor

Comprar nuevo

EUR 152,33
Convertir moneda
Gastos de envío: EUR 5,15
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 33408471-n

Contactar al vendedor

Comprar nuevo

EUR 152,31
Convertir moneda
Gastos de envío: EUR 17,22
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 33408471-n

Contactar al vendedor

Comprar nuevo

EUR 153,70
Convertir moneda
Gastos de envío: EUR 17,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. 396 pp. Englisch. Nº de ref. del artículo: 9783319980737

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Alberto Fernández
Publicado por Springer International Publishing, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. Nº de ref. del artículo: 9783319980737

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Fernández
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783319980737

Contactar al vendedor

Comprar nuevo

EUR 148,14
Convertir moneda
Gastos de envío: EUR 25,54
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33408471

Contactar al vendedor

Comprar usado

EUR 166,87
Convertir moneda
Gastos de envío: EUR 17,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Publicado por Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33408471

Contactar al vendedor

Comprar usado

EUR 166,72
Convertir moneda
Gastos de envío: EUR 17,22
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda