Artículos relacionados a Guide to Convolutional Neural Networks: A Practical...

Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification - Tapa blanda

 
9783319861906: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification

Sinopsis

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

"Sinopsis" puede pertenecer a otra edición de este libro.

De la contraportada

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features:

  • Explains the fundamental concepts behind training linear classifiers and feature learning
  • Discusses the wide range of loss functions for training binary and multi-class classifiers
  • Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks
  • Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks
  • Describes two real-world examples of the detection and classification of traffic signs using deep learning methods
  • Examines a range of varied techniques for visualizing neural networks, using a Python interface
  • Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783319575490: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification

Edición Destacada

ISBN 10:  331957549X ISBN 13:  9783319575490
Editorial: Springer-Verlag GmbH, 2017
Tapa dura

Resultados de la búsqueda para Guide to Convolutional Neural Networks: A Practical...

Imagen del vendedor

Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. 308 pp. Englisch. Nº de ref. del artículo: 9783319861906

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Elnaz Jahani Heravi
Publicado por Springer International Publishing, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. Nº de ref. del artículo: 9783319861906

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Hamed Habibi Aghdam|Elnaz Jahani Heravi
Publicado por Springer International Publishing, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes how to practically solve problems of traffic sign detection and classification using deep learning methodsExplains how the methods can be easily implemented, without requiring prior background knowledge in the field of deep learning. Nº de ref. del artículo: 458626493

Contactar al vendedor

Comprar nuevo

EUR 47,23
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Habibi Aghdam, Hamed
Publicado por Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26376468509

Contactar al vendedor

Comprar nuevo

EUR 76,81
Convertir moneda
Gastos de envío: EUR 9,84
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Habibi Aghdam, Hamed
Publicado por Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 369609666

Contactar al vendedor

Comprar nuevo

EUR 78,24
Convertir moneda
Gastos de envío: EUR 10,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Nº de ref. del artículo: 9783319861906

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Habibi Aghdam, Hamed
Publicado por Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18376468503

Contactar al vendedor

Comprar nuevo

EUR 81,01
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Hamed Habibi Aghdam
Publicado por Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. reprint edition. 282 pages. 9.50x6.25x0.75 inches. In Stock. Nº de ref. del artículo: 3319861905

Contactar al vendedor

Comprar nuevo

EUR 84,05
Convertir moneda
Gastos de envío: EUR 11,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Habibi Aghdam, Hamed, Jahani Heravi, Elnaz
Publicado por Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuevo Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA80033198619056

Contactar al vendedor

Comprar nuevo

EUR 100,01
Convertir moneda
Gastos de envío: EUR 28,90
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito