Artículos relacionados a Reinforcement Learning for Optimal Feedback Control:...

Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach (Communications and Control Engineering) - Tapa dura

 
9783319783833: Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach (Communications and Control Engineering)

Sinopsis

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution.

To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements.

This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Rushikesh Kamalapurkar received his M.S. and his Ph.D. degree in 2011 and 2014, respectively, from the Mechanical and Aerospace Engineering Department at the University of Florida. After working for a year as a postdoctoral research fellow with Dr. Warren E. Dixon, he was selected as the 2015-16 MAE postdoctoral teaching fellow. In 2016 he joined the School of Mechanical and Aerospace Engineering at the Oklahoma State University as an Assistant professor. His primary research interest has been intelligent, learning-based optimal control of uncertain nonlinear dynamical systems. He has published 3 book chapters, 18 peer reviewed journal papers and 21 peer reviewed conference papers. His work has been recognized by the 2015 University Of Florida Department Of Mechanical and Aerospace Engineering Best Dissertation Award, and the 2014 University of Florida Department of Mechanical and Aerospace Engineering Outstanding Graduate Research Award.
Dr. Joel Rosenfeld is a postdoctoral researcher in the Department of Electrical Engineering and Computer Science at Vanderbilt University in the VeriVital Laboratory. He received his PhD in Mathematics at the University of Florida in 2013 under the direction of Dr. Michael T. Jury. His doctoral work concerned densely defined operators over reproducing kernel Hilbert spaces (RKHS), where he established characterizations of densely defined multiplication operators for several RKHSs. Dr. Rosenfeld then spent four years as a postdoctoral researcher in the Nonlinear Controls and Robotics Laboratory under Dr. Warren E. Dixon where he worked on problems in Numerical Analysis and Optimal Control Theory. Working together with Dr. Dixon and Dr. Kamalapurkar, he developed the numerical approach represented by the state following (StaF) method, which enables the implementation of online optimal control methods that were previously intractable.
Prof. Warren Dixon received his Ph.D. in 2000 from the Department of Electrical and Computer Engineering from Clemson University. He worked as a research staff member and Eugene P. Wigner Fellow at Oak Ridge National Laboratory (ORNL) until 2004, when he joined the University of Florida in the Mechanical and Aerospace Engineering Department. His main research interest has been the development and application of Lyapunov-based control techniques for uncertain nonlinear systems. He has published 3 books, an edited collection, 13 chapters, and over 130 journal and 240 conference papers. His work has been recognized by the 2015 & 2009 American Automatic Control Council (AACC) O. Hugo Schuck (Best Paper) Award, the 2013 Fred Ellersick Award for Best Overall MILCOM Paper, a 2012-2013 University of Florida College of Engineering Doctoral Dissertation Mentoring Award, the 2011 American Society of Mechanical Engineers (ASME) Dynamics Systems and Control Division Outstanding Young Investigator Award, the 2006 IEEE Robotics and Automation Society (RAS) Early Academic Career Award, an NSF CAREER Award (2006-2011), the 2004 Department of Energy Outstanding Mentor Award, and the 2001 ORNL Early Career Award for Engineering Achievement. He is an ASME and IEEE Fellow, an IEEE Control Systems Society (CSS) Distinguished Lecturer, and has served as the Director of Operations for the Executive Committee of the IEEE CSS Board of Governors (2012-2015). He was awarded the Air Force Commander's Public Service Award (2016) for his contributions to the U.S. Air Force Science Advisory Board. He is currently or formerly an associate editor for ASME Journal of Journal of Dynamic Systems, Measurement and Control, Automatica, IEEE Transactions on Systems Man and Cybernetics: Part B Cybernetics, and the International Journal of Robust and Nonlinear Control.

De la contraportada

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book's focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution.

To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor-critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements.

This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer-Verlag GmbH
  • Año de publicación2018
  • ISBN 10 3319783831
  • ISBN 13 9783319783833
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición1
  • Número de páginas312
  • Contacto del fabricanteno disponible

Comprar usado

Zustand: Hervorragend | Seiten:...
Ver este artículo

GRATIS gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030086893: Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach (Communications and Control Engineering)

Edición Destacada

ISBN 10:  3030086895 ISBN 13:  9783030086893
Editorial: Springer, 2019
Tapa blanda

Resultados de la búsqueda para Reinforcement Learning for Optimal Feedback Control:...

Imagen de archivo

Rushikesh Kamalapurkar, Warren Dixon, Joel Rosenfeld, Patrick Walters
Publicado por Springer International Publishing, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 312 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 29487795/1

Contactar al vendedor

Comprar usado

EUR 65,97
Convertir moneda
Gastos de envío: GRATIS
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh; Walters, Patrick; Rosenfeld, Joel; Dixon, Warren
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Antiguo o usado Tapa dura Original o primera edición

Librería: SpringBooks, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: As New. 1. Auflage. unread, like new - will be dispatched immediately. Nº de ref. del artículo: CE-2310C-TEPPICHMIRE-15-1000XS

Contactar al vendedor

Comprar usado

EUR 61,71
Convertir moneda
Gastos de envío: EUR 11,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Rushikesh Kamalapurkar|Patrick Walters|Joel Rosenfeld|Warren Dixon
Publicado por Springer International Publishing, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Illustrates&nbspthe effectiveness of the developed methods with comparative simulations&nbspto leading off-line numerical methodsPresents theoretical development through engineering examples and hardware implementations. Nº de ref. del artículo: 218770942

Contactar al vendedor

Comprar nuevo

EUR 146,12
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Rushikesh Kamalapurkar
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book's focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor-critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry. 312 pp. Englisch. Nº de ref. del artículo: 9783319783833

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Rushikesh Kamalapurkar
Publicado por Springer International Publishing, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book's focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor-critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry. Nº de ref. del artículo: 9783319783833

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh; Walters, Patrick; Rosenfeld, Joel; Dixon, Warren
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26376478399

Contactar al vendedor

Comprar nuevo

EUR 250,39
Convertir moneda
Gastos de envío: EUR 10,12
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh (Author)/ Walters, Patrick (Author)/ Rosenfeld, Joel (Author)/ Dixon, Warren (Author)
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 293 pages. 9.25x6.10x0.79 inches. In Stock. Nº de ref. del artículo: zk3319783831

Contactar al vendedor

Comprar nuevo

EUR 250,69
Convertir moneda
Gastos de envío: EUR 11,91
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh; Walters, Patrick; Rosenfeld, Joel; Dixon, Warren
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 369567072

Contactar al vendedor

Comprar nuevo

EUR 262,66
Convertir moneda
Gastos de envío: EUR 10,54
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh; Walters, Patrick; Rosenfeld, Joel; Dixon, Warren
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18376478389

Contactar al vendedor

Comprar nuevo

EUR 264,81
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Kamalapurkar, Rushikesh, Walters, Patrick, Rosenfeld, Joel,
Publicado por Springer, 2018
ISBN 10: 3319783831 ISBN 13: 9783319783833
Nuevo Tapa dura

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: New. New. book. Nº de ref. del artículo: ERICA80033197838316

Contactar al vendedor

Comprar nuevo

EUR 268,69
Convertir moneda
Gastos de envío: EUR 29,78
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito