This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry―the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz―this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).
The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate levelcourses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.
Readers who are teaching from Ideals, Varieties, and Algorithms, or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to jlittle@holycross.edu.
From the reviews of previous editions:
“…The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. …The book is well-written. …The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”
―Peter Schenzel, zbMATH, 2007
“I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.”
―The American Mathematical Monthly
"Sinopsis" puede pertenecer a otra edición de este libro.
David A. Cox is currently Professor of Mathematics at Amherst College. John Little is currently Professor of Mathematics at College of the Holy Cross. Donal O'Shea is currently President and Professor of Mathematics at New College of Florida.
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem, and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).
The book may serve as a first or second course in undergraduate abstract algebra and, with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica®, and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.
From the reviews of previous editions:
“…The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations, and elimination theory. …The book is well-written. …The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”
—Peter Schenzel, zbMATH, 2007
“I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry.”
—The American Mathematical Monthly
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 21,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Nicoline Thieme, Leipzig, Alemania
Condición: Sehr gut. 4. Edition;. Gr.8° 646 pages with fig.; Orig.-Broschur; 1250g; [Englisch]; kaum Gebrauchsspuren / nearly fine 4. Edition; _ xQx_. BUCH. Nº de ref. del artículo: 51749
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. Neuware 676 pp. Englisch. Nº de ref. del artículo: 9783319374277
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering. Nº de ref. del artículo: 9783319374277
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. New edition extensively revised and updatedCovers important topics such as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry and dimension theoryFourth edition includes updates on the computer algebra and. Nº de ref. del artículo: 458604887
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 676 pp. Englisch. Nº de ref. del artículo: 9783319374277
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 646. Nº de ref. del artículo: 371860314
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 646. Nº de ref. del artículo: 26375233669
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 646. Nº de ref. del artículo: 18375233679
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA80033193742736
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_410007957
Cantidad disponible: 1 disponibles