This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors’ new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book’s final chapter is devoted to finite horizon stochastic control problems and Markov decision processes. The algorithms developed represent a valuable contribution to the important field of computational network theory.
"Sinopsis" puede pertenecer a otra edición de este libro.
Prof. Dr. Stefan Pickl is professor for Operations Research at Universität der Bundeswehr in Munich. He studied mathematics, electrical engineering, and philosophy at TU Darmstadt and EPFL Lausanne 1987-93. Dipl.-Ing. '93, Doctorate 1998 with award. Assistant Professor at Cologne University (Dr. habil. 2005; venia legendi ``Mathematics"). Visiting Professor at University of New Mexico (U.S.A.), University Graz (Austria), University of California at Berkeley. Visiting scientist at SANDIA, Los Alamos National Lab, Santa Fe Institute for Complex Systems and MIT. Associated with Centre for the Advanced Study of Algorithms (CASA, USA) and Center for Network Innovation and Experimentation (CENETIX, USA) , vice-chair of EURO group ``Experimental OR”, program for highly gifted pupils, research program``Intelligent Networks and Security Structures” (INESS), ``Critical Infrastructures and System Analyses" (CRISYS). International best paper awards ’03, ’05, '07. Foundation of COMTESSA (Competence Center for Operations Research, Strategic Planning Management, Safety & Security ALLIANCE).
Prof. Dr. Dmitrii Lozovanu received his PhD in mathematics in 1980 from the Institute of Cybernetics of Academy of Sciences of Ukraine, Kiev. After the habilitation theses defense in 1991 he became professor in Computer Science. He is the head of department of Applied Mathematics at the Faculty of Mathematics and Computer Science of Moldova State University, Chisinau. His research interest
s are related to discrete optimization, game theory, optimal control and stochastic decision processes.This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book s final chapter is devoted to finite horizon stochastic control problems and Markov decision processes. The algorithms developed represent a valuable contribution to the important field of computational network theory.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783319358734
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 27614362-n
Cantidad disponible: 15 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020094731
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the books final chapter is devoted to finite horizon stochastic control problems and Markov decision processes. The algorithms developed represent a valuable contribution to the important field of computational network theory. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783319358734
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 27614362
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783319358734_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783319358734
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic control problems and Markov decision processes. The algorithms developed represent a valuable contribution to the important field of computational network theory. 424 pp. Englisch. Nº de ref. del artículo: 9783319358734
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Advances in Computational Management Science. Num Pages: 419 pages, 54 black & white illustrations, biography. BIC Classification: KJT; PBU; UMB. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 22. Weight in Grams: 646. . 2016. Softcover reprint of the original 1st ed. 2015. Paperback. . . . . Nº de ref. del artículo: V9783319358734
Cantidad disponible: 15 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Systematizes the most important existing methods of stochastic dynamic optimizationDescribes new algorithms for solving different classes of stochastic dynamic programming problemsPresents methods to solve practical decision problems from d. Nº de ref. del artículo: 385703943
Cantidad disponible: Más de 20 disponibles