Introduction: What is Machine Learning.- Computational Learning Theory.- Overview of Supervised Learning Methods.- Overview of Unsupervised Learning Methods.- Performance Evaluation.- Variety of Applications in Radiation Oncology.- Machine Learning for Quality Assurance: Quality Assurance as a Learning Problem.- Detection of Radiotherapy Errors Using Unsupervised Learning.- Prediction of Radiotherapy Errors Using Supervised Learning.- Machine Learning for Computer-Aided Detection: Detection of Cancer Lesions from Imaging.- Classification of Malignant and Benign Tumours.- Machine Learning for Treatment Planning and Delivery.- Image-guided Radiotherapy with Machine Learning: IMRT Optimization Using Machine Learning.- Treatment Assessment Tools.- Machine Learning for Motion Management: Prediction of Respiratory Motion.- Motion-Correction Using Learning Methods.- Machine Learning Application in 4D-CT.- Machine Learning Application in Dynamic Delivery.- Machine Learning for Outcomes Modeling: Bioinformatics of Treatment Response.- Modelling of Norma Tissue Complication Probabilities (NTCP).- Modelling of Tumour Control Probability (TCP).
"Sinopsis" puede pertenecer a otra edición de este libro.
(Ningún ejemplar disponible)
Buscar: Crear una petición¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.
Crear una petición