Artículos relacionados a Analytic Capacity, the Cauchy Transform, and Non-homogeneous...

Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory: 307 (Progress in Mathematics) - Tapa dura

 
9783319005959: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory: 307 (Progress in Mathematics)

Sinopsis

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Xavier Tolsa is Research Professor of Mathematics from ICREA - Universitat Autònoma de Barcelona. He is the author of many research papers in connection with the topics discussed in this book. The present monograph was awarded the 2013 Ferran Sunyer i Balaguer Prize.

De la contraportada

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995 2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialBirkhäuser
  • Año de publicación2014
  • ISBN 10 3319005952
  • ISBN 13 9783319005959
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas412
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783319345444: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory: 307 (Progress in Mathematics)

Edición Destacada

ISBN 10:  3319345443 ISBN 13:  9783319345444
Editorial: Birkhäuser, 2016
Tapa blanda

Resultados de la búsqueda para Analytic Capacity, the Cauchy Transform, and Non-homogeneous...

Imagen del vendedor

Xavier Tolsa
Publicado por Springer International Publishing, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 4495891

Contactar al vendedor

Comprar nuevo

EUR 93,00
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers. 412 pp. Englisch. Nº de ref. del artículo: 9783319005959

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation,he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers. Nº de ref. del artículo: 9783319005959

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Xavier Tolsa
Publicado por Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 412. Nº de ref. del artículo: 2697853923

Contactar al vendedor

Comprar nuevo

EUR 159,26
Convertir moneda
Gastos de envío: EUR 10,12
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Tolsa Xavier
Publicado por Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 412 8 Illus. Nº de ref. del artículo: 94543420

Contactar al vendedor

Comprar nuevo

EUR 165,53
Convertir moneda
Gastos de envío: EUR 10,53
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Tolsa Xavier
Publicado por Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 412. Nº de ref. del artículo: 1897853929

Contactar al vendedor

Comprar nuevo

EUR 167,18
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito