heavily Environmental mathematical models represent one of the key aids for scientists to forecast, create, and evaluate complex scenarios. These models rely on the data collected by direct field observations. However, assembly of a functional and comprehensive dataset for any environmental variable is difficult, mainly because of i) the high cost of the monitoring campaigns and ii) the low reliability of measurements (e.g., due to occurrences of equipment malfunctions and/or issues related to equipment location). The lack of a sufficient amount of Earth science data may induce an inadequate representation of the response’s complexity in any environmental system to any type of input/change, both natural and human-induced. In such a case, before undertaking expensive studies to gather and analyze additional data, it is reasonable to first understand what enhancement in estimates of system performance would result if all the available data could be well exploited. Missing data imputation is an important task in cases where it is crucial to use all available data and not discard records with missing values. Different approaches are available to deal with missing data. Traditional statistical data completion methods are used in different domains to deal with single and multiple imputation problems. More recently, machine learning techniques, such as clustering and classification, have been proposed to complete missing data. This book showcases the body of knowledge that is aimed at improving the capacity to exploit the available data to better represent, understand, predict, and manage the behavior of environmental systems at all practical scales.
"Sinopsis" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLING22Oct2018170258841
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783039282104
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783039282104
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783039282104_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783039282104
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 94. Nº de ref. del artículo: 26378031058
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 94. Nº de ref. del artículo: 385872909
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 94. Nº de ref. del artículo: 18378031064
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Klappentextrnrnheavily Environmental mathematical models represent one of the key aids for scientists to forecast, create, and evaluate complex scenarios. These models rely on the data collected by direct field observations. However, assembly of. Nº de ref. del artículo: 448690194
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Overcoming Data Scarcity in Earth Science | Taschenbuch | Kartoniert / Broschiert | Englisch | 2020 | MDPI AG | EAN 9783039282104 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 118465378
Cantidad disponible: 5 disponibles