The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications because of their properties of interpolation between integer-order operators. This field includes classical fractional operators such as Riemann-Liouville, Weyl, Caputo, and Grunwald-Letnikov; nevertheless, especially in the last two decades, many new operators have also appeared that often define using integrals with special functions in the kernel, such as Atangana-Baleanu, Prabhakar, Marichev-Saigo-Maeda, and the tempered fractional equation, as well as their extended or multivariable forms. These have been intensively studied because they can also be useful in modelling and analysing real-world processes, due to their different properties and behaviours from those of the classical cases.
Special functions, such as Mittag-Leffler functions, hypergeometric functions, Fox's H-functions, Wright functions, and Bessel and hyper-Bessel functions, also have important connections with fractional calculus. Some of them, such as the Mittag-Leffler function and its generalisations, appear naturally as solutions of fractional differential equations. Furthermore, many interesting relationships between different special functions are found by using the operators of fractional calculus. Certain special functions have also been applied to analyse the qualitative properties of fractional differential equations, e.g., the concept of Mittag-Leffler stability.The aim of this book is to explore and highlight the diverse connections between fractional calculus and special functions, and their associated applications.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020040032
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783036536170
Cantidad disponible: 2 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783036536170
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9783036536170
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9783036536170
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783036536170_new
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26394734502
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 401642617
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18394734508
Cantidad disponible: 4 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications because of their properties of interpolation between integer-order operators. This field includes classical fractional operators such as Riemann-Liouville, Weyl, Caputo, and Grunwald-Letnikov; nevertheless, especially in the last two decades, many new operators have also appeared that often define using integrals with special functions in the kernel, such as Atangana-Baleanu, Prabhakar, Marichev-Saigo-Maeda, and the tempered fractional equation, as well as their extended or multivariable forms. These have been intensively studied because they can also be useful in modelling and analysing real-world processes, due to their different properties and behaviours from those of the classical cases. Special functions, such as Mittag-Leffler functions, hypergeometric functions, Fox's H-functions, Wright functions, and Bessel and hyper-Bessel functions, also have important connections with fractional calculus. Some of them, such as the Mittag-Leffler function and its generalisations, appear naturally as solutions of fractional differential equations. Furthermore, many interesting relationships between different special functions are found by using the operators of fractional calculus. Certain special functions have also been applied to analyse the qualitative properties of fractional differential equations, e.g., the concept of Mittag-Leffler stability.The aim of this book is to explore and highlight the diverse connections between fractional calculus and special functions, and their associated applications. Nº de ref. del artículo: 9783036536170
Cantidad disponible: 2 disponibles