Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason’s results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason’s work, V. M.
"Sinopsis" puede pertenecer a otra edición de este libro.
Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,28 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,28 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20183831-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Mobius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz.- Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M. Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the MAbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz.A Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783034877145
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020038644
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 20183831
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783034877145_new
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 660. Nº de ref. del artículo: 26128410828
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 660 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 131128083
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 660. Nº de ref. del artículo: 18128410822
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I. Analysis of the Caratheodory Interpolation Problem.- II. Analysis of the Caratheodory Interpolation Problem for Positive-Real Functions.- III. Schur Numbers, Geophysics and Inverse Scattering Problems.- IV. Contractive Expansions on Euclidian and Hilbert. Nº de ref. del artículo: 4319175
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classical H~ interpolation theory was conceived at the beginning of the century by C. Caratheodory, L. Fejer and I. Schur. The basic method, due to Schur, in solving these problems consists in applying the Möbius transform to peel off the data. In 1967, D. Sarason encompassed these classical interpolation problems in a representation theorem of operators commuting with special contractions. Shortly after that, in 1968, B. Sz. Nagy and C. Foias obtained a purely geometrical extension of Sarason's results. Actually, their result states that operators intertwining restrictions of co-isometries can be extended, by preserving their norm, to operators intertwining these co-isometries; starring with R. G. Douglas, P. S. Muhly and C. Pearcy, this is referred to as the commutant lifting theorem. In 1957, Z. Nehari considered an L ~ interpolation problern which in turn encompassed the same classical interpolation problems, as well as the computation of the distance of a function f in L ~ to H~. At about the sametime as Sarason's work, V. M. 632 pp. Englisch. Nº de ref. del artículo: 9783034877145
Cantidad disponible: 2 disponibles