The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40’s a new investigation tool joined the arsenal - that of transformation operators.
"Sinopsis" puede pertenecer a otra edición de este libro.
The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020038073
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783034854863
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783034854863_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783034854863
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y' + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators. 367 pp. Deutsch. Nº de ref. del artículo: 9783034854863
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 380. Nº de ref. del artículo: 26357349899
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 380 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 356189652
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 380. Nº de ref. del artículo: 18357349889
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 378 pages. German language. 9.70x6.70x0.80 inches. In Stock. Nº de ref. del artículo: x-3034854862
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The Sturm-Liouville Equation and Transformation Operators.- The Sturm-Liouville Boundary Value Problem on the Half Line.- The Boundary Value Problem of Scattering Theory.- Nonlinear Equations.The development of many important directions of mathematics a. Nº de ref. del artículo: 4318549
Cantidad disponible: Más de 20 disponibles