In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón–Zygmund decomposition. These new Calderón–Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón–Zygmund singular integral operators.
The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón–Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.
"Sinopsis" puede pertenecer a otra edición de este libro.
In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón Zygmund decomposition. These new Calderón Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón Zygmund singular integral operators.
The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,79 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,42 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020037852
Cantidad disponible: Más de 20 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 70fa247ac5116c700ffe31e1d287c20b
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón-Zygmund decomposition. These new Calderón-Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón-Zygmund singular integral operators.The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón-Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals. 332 pp. Englisch. Nº de ref. del artículo: 9783034807524
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783034807524_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783034807524
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical CalderonZygmund decomposition. These new CalderonZygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of CalderonZygmund singular integral operators.The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical CalderonZygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals. In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783034807524
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. This book proposes a unified method for the construction of near-minimizers for certain important functions, which arise in approximation, harmonic analysis and ill-posed problems and are most widely used in interpolation theory. Series: Monografie Matematyczne. Num Pages: 332 pages, biography. BIC Classification: PBKB; PBKF; PBKJ. Category: (G) General (US: Trade). Dimension: 235 x 155 x 18. Weight in Grams: 510. . 2014. 2013th Edition. paperback. . . . . Nº de ref. del artículo: V9783034807524
Cantidad disponible: 15 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4318349
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón¿Zygmund decomposition. These new Calderón¿Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón¿Zygmund singular integral operators.The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón¿Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 332 pp. Englisch. Nº de ref. del artículo: 9783034807524
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderón-Zygmund decomposition. These new Calderón-Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderón-Zygmund singular integral operators.The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderón-Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals. Nº de ref. del artículo: 9783034807524
Cantidad disponible: 1 disponibles