Artículos relacionados a Convex Integration Theory: Solutions to the h-principle...

Convex Integration Theory: Solutions to the h-principle in geometry and topology (Modern Birkhäuser Classics) - Tapa blanda

 
9783034800594: Convex Integration Theory: Solutions to the h-principle in geometry and topology (Modern Birkhäuser Classics)

Reseña del editor

§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.

Contraportada

This book provides a comprehensive study of convex integration theory in immersion-theoretic topology. Convex integration theory, developed originally by M. Gromov, provides general topological methods for solving the h-principle for a wide variety of problems in differential geometry and topology, with applications also to PDE theory and to optimal control theory. Though topological in nature, the theory is based on a precise analytical approximation result for higher order derivatives of functions, proved by M. Gromov. This book is the first to present an exacting record and exposition of all of the basic concepts and technical results of convex integration theory in higher order jet spaces, including the theory of iterated convex hull extensions and the theory of relative h-principles. A second feature of the book is its detailed presentation of applications of the general theory to topics in symplectic topology, divergence free vector fields on 3-manifolds, isometric immersions, totally real embeddings, underdetermined non-linear systems of PDEs, the relaxation theorem in optimal control theory, as well as applications to the traditional immersion-theoretical topics such as immersions, submersions, k-mersions and free maps.

 

The book should prove useful to graduate students and to researchers in topology, PDE theory and optimal control theory who wish to understand the h-principle and how it can be applied to solve problems in their respective disciplines.

 

------  Reviews

 

The first eight chapters of Spring’s monograph contain a detailed exposition of convex integration theory for open and ample relations with detailed proofs that were often omitted in Gromov’s book. (...) Spring’s book makes no attempt to include all topics from convex integration theory or to uncover all of the gems in Gromov’s fundamental account, but it will nonetheless (or precisely for that reason) take its place as a standard reference for the theory next to Gromov’s towering monograph and should prove indispensable for anyone wishing to learn about the theory in a more systematic way.

- Mathematical Reviews

 

This volume provides a comprehensive study of convex integration theory. (...) We recommended the book warmly to all interested in differential topology, symplectic topology and optimal control theory.

- Matematica

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialBirkhäuser
  • Año de publicación2010
  • ISBN 10 3034800592
  • ISBN 13 9783034800594
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas224

Comprar usado

VIII, 212 p. Softcover. Versand...
Ver este artículo

EUR 30,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 3,55 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Convex Integration Theory: Solutions to the h-principle...

Imagen de archivo

Spring, D.
Publicado por Basel, Birkhäuser., 1998
ISBN 10: 3034800592 ISBN 13: 9783034800594
Antiguo o usado Tapa blanda

Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

VIII, 212 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Reprint of the 1998 Edition. Cover partially bumped. Stamped. Modern Birkhäuser Classics. Sprache: Englisch. Nº de ref. del artículo: 4775JB

Contactar al vendedor

Comprar usado

EUR 11,00
Convertir moneda
Gastos de envío: EUR 30,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Spring, David
Publicado por Birkhäuser, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Antiguo o usado Tapa blanda

Librería: Anybook.com, Lincoln, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,450grams, ISBN:9783034800594. Nº de ref. del artículo: 5832913

Contactar al vendedor

Comprar usado

EUR 40,44
Convertir moneda
Gastos de envío: EUR 14,01
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Spring, David
Publicado por Birkhäuser, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020037624

Contactar al vendedor

Comprar nuevo

EUR 54,27
Convertir moneda
Gastos de envío: EUR 3,55
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Spring, David
Publicado por Birkhäuser, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In English. Nº de ref. del artículo: ria9783034800594_new

Contactar al vendedor

Comprar nuevo

EUR 61,72
Convertir moneda
Gastos de envío: EUR 14,13
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

David Spring
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. Historical Remarks Convex Integration theory, rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi cation of immersions, are provable by all three methods. 213 pp. Englisch. Nº de ref. del artículo: 9783034800594

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

David Spring
Publicado por Birkh�user 2010-12-09, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Paperback

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783034800594

Contactar al vendedor

Comprar nuevo

EUR 58,61
Convertir moneda
Gastos de envío: EUR 18,27
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

David Spring
Publicado por Springer, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 224. Nº de ref. del artículo: 262417951

Contactar al vendedor

Comprar nuevo

EUR 82,25
Convertir moneda
Gastos de envío: EUR 3,55
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

David Spring
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. Historical Remarks Convex Integration theory, rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi cation of immersions, are provable by all three methods. Nº de ref. del artículo: 9783034800594

Contactar al vendedor

Comprar nuevo

EUR 56,98
Convertir moneda
Gastos de envío: EUR 29,71
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Spring David
Publicado por Springer, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 224 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5462720

Contactar al vendedor

Comprar nuevo

EUR 84,10
Convertir moneda
Gastos de envío: EUR 7,66
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Spring David
Publicado por Springer, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 224. Nº de ref. del artículo: 182417941

Contactar al vendedor

Comprar nuevo

EUR 84,83
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda