1 Lp -theory of boundary integral equations on a contour with peak.- 1.1 Introduction.- 1.2 Continuity of boundary integral operators.- 1.3 Dirichlet and Neumann problems for a domain with peak.- 1.4 Integral equations of the Dirichlet and Neumann problems.- 1.5 Direct method of integral equations of the Neumann and Dirichlet problems.- 2 Boundary integral equations in Hölder spaces on a contour with peak.- 2.1 Weighted Hölder spaces.- 2.2 Boundedness of integral operators.- 2.3 Dirichlet and Neumann problems in a strip.- 2.4 Boundary integral equations of the Dirichlet and Neumann problems in domains with outward peak.- 2.5 Boundary integral equations of the Dirichlet and Neumann problems in domains with inward peak.- 2.6 Integral equation of the first kind on a contour with peak.- 2.7 Appendices.- 3 Asymptotic formulae for solutions of boundary integral equations near peaks.- 3.1 Preliminary facts.- 3.2 The Dirichlet and Neumann problems for domains with peaks.- 3.3 Integral equations of the Dirichlet problem.- 3.4 Integral equations of the Neumann problem.- 3.5 Appendices.- 4 Integral equations of plane elasticity in domains with peak.- 4.1 Introduction.- 4.2 Boundary value problems of elasticity.- 4.3 Integral equations on a contour with inward peak.- 4.4 Integral equations on a contour with outward peak.- Bibliography.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is a comprehensive exposition of the theory of boundary integral equations for single and double layer potentials on curves with exterior and interior cusps. Three chapters cover harmonic potentials, and the final chapter treats elastic potentials.
An equation of the form ??(x)? K(x,y)?(y)d?(y)= f(x),x?X, (1) X is called a linear integral equation. Here (X,?)isaspacewith ?-?nite measure ? and ? is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the ?rst kind if ? = 0 and of the second kind if ? = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar´ e, G. Robin, O. H¨ older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW? andofthe single layer potentialV?. In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation ???+W? = g (2) and ? ???+ V? = h (3) ?n respectively, where ?/?n is the derivative with respect to the outward normal to the contour.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 26,44 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 356 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 5605717/12
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-261703
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An equation of the form (x) K(x,y) (y)d (y)= f(x),x X, (1) X is called a linear integral equation. Here (X, )isaspacewith - nite measure and is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the rst kind if = 0 and of the second kind if = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar e, G. Robin, O. H older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW andofthe single layer potentialV . In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation +W = g (2) and + V = h (3) n respectively, where / n is the derivative with respect to the outward normal to the contour. 344 pp. Englisch. Nº de ref. del artículo: 9783034601702
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - An equation of the form (x) K(x,y) (y)d (y)= f(x),x X, (1) X is called a linear integral equation. Here (X, )isaspacewith - nite measure and is a complex parameter, K and f are given complex-valued functions. The function K is called the kernel and f is the right-hand side. The equation is of the rst kind if = 0 and of the second kind if = 0. Integral equations have attracted a lot of attention since 1877 when C. Neumann reduced the Dirichlet problem for the Laplace equation to an integral equation and solved the latter using the method of successive approximations. Pioneering results in application of integral equations in the theory of h- monic functions were obtained by H. Poincar e, G. Robin, O. H older, A.M. L- punov, V.A. Steklov, and I. Fredholm. Further development of the method of boundary integral equations is due to T. Carleman, G. Radon, G. Giraud, N.I. Muskhelishvili,S.G.Mikhlin,A.P.Calderon,A.Zygmundandothers. Aclassical application of integral equations for solving the Dirichlet and Neumann boundary value problems for the Laplace equation is as follows. Solutions of boundary value problemsaresoughtin the formof the doublelayerpotentialW andofthe single layer potentialV . In the case of the internal Dirichlet problem and the ext- nal Neumann problem, the densities of corresponding potentials obey the integral equation +W = g (2) and + V = h (3) n respectively, where / n is the derivative with respect to the outward normal to the contour. Nº de ref. del artículo: 9783034601702
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9783034601702_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. The only book dedicated to boundary integral equations for non-Lipschitz domainsNew method, different from the traditional approach based on the theories of Fredholm and singular integral operatorsDetailed study of both functional analytic . Nº de ref. del artículo: 4317877
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xi + 342. Nº de ref. del artículo: 261368130
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. xi + 342. Nº de ref. del artículo: 6512541
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. xi + 342. Nº de ref. del artículo: 181368136
Cantidad disponible: 4 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020037559
Cantidad disponible: Más de 20 disponibles