The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process” methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications.
The book will be useful to two main audiences:
1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization
2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology.
"Sinopsis" puede pertenecer a otra edición de este libro.
Francesco Archetti is Professor Emeritus of Computer Science and full Professor of Computer Science at the Department of Informatics, Systems and Communication (DISCo), University of Milano-Bicocca, Italy. His research activities are focused on Data Analytics, Network Science, Probabilistic Modelling, Predictive Analytics, and Optimal Learning, with application to security, water management, logistics, and cyber-physical systems. He is one of the two authors of the Springer Brief Bayesian Optimization and Data Science (2019).
Antonio Candelieri is an Associate Professor for the Department of Economics, Management, and Statistics at the University of Milano-Bicocca, Italy. His research activities are focused on Machine Learning and Bayesian Optimization. He was ranked within the "Top 2% Scientists, Stanford University Ranking 2023" and received a "Paper Award 2022 Honorable Mention" from the Journal of Global Optimization (Springer). Andrea Ponti is a PhD candidate at the Department of Economics, Management, and Statistics, University of Milano-Bicocca, Italy. His research focuses on the optimization of black-box functions using advanced Bayesian methods. From an industrial perspective, he designs and develops versatile machine learning solutions, focusing on foundation models and Large Language Models (LLMs, aka what's behind ChatGPT).
Andrea Ponti is a PhD student in Data Science with a master’s degree in computer science. His research focuses on the optimization of complex black-box functions using advanced Bayesian methods. Alongside his academic work, he has practical experience developing machine learning solutions in industry, especially in the areas of foundation models and large language models. His work aims to connect research and real-world applications in a meaningful way.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: QOQBXZLXFC
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 51063283-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783031979644
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 51063283
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications. The book will be useful to two main audiences:1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031979644
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26404415575
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel 'Augmented Gaussian Process' methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications.The book will be useful to two main audiences:1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, andbiotechnology. 99 pp. Englisch. Nº de ref. del artículo: 9783031979644
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 409820040
Cantidad disponible: 4 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Multiple Information Source Bayesian Optimization. Book. Nº de ref. del artículo: BBS-9783031979644
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 51063283-n
Cantidad disponible: Más de 20 disponibles