Artículos relacionados a Math for Data Science

Hijab, Omar Math for Data Science ISBN 13: 9783031897061

Math for Data Science - Tapa dura

 
9783031897061: Math for Data Science

Sinopsis

Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science.  The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.

Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Omar Hijab obtained his doctorate from the University of California at Berkeley, and is faculty at Temple University in Philadelphia, Pennsylvania. Other book publications include Introduction to Calculus and Classical Analysis, 4th edition (978-3-319-28399-9) and Stabilization of Control Systems (978-0-387-96384-6).

De la contraportada

Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.

Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 2,26 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,50 gastos de envío desde Italia a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Math for Data Science

Imagen de archivo

Hijab, Omar
Publicado por Springer, 2025
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura
Impresión bajo demanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: IHNGCZFKNY

Contactar al vendedor

Comprar nuevo

EUR 66,23
Convertir moneda
Gastos de envío: EUR 5,50
De Italia a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Hijab, Omar
Publicado por Springer, 2025
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 50336310-n

Contactar al vendedor

Comprar nuevo

EUR 96,39
Convertir moneda
Gastos de envío: EUR 2,26
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Omar Hijab
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031897061

Contactar al vendedor

Comprar nuevo

EUR 98,74
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Hijab, Omar
Publicado por Springer, 2025
ISBN 10: 3031897064 ISBN 13: 9783031897061
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50336310

Contactar al vendedor

Comprar usado

EUR 99,89
Convertir moneda
Gastos de envío: EUR 2,26
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen del vendedor

Omar Hijab
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter not Elektronisches Buch and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. 592 pp. Englisch. Nº de ref. del artículo: 9783031897061

Contactar al vendedor

Comprar nuevo

EUR 80,24
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Omar Hijab
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 592 pp. Englisch. Nº de ref. del artículo: 9783031897061

Contactar al vendedor

Comprar nuevo

EUR 80,24
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Omar Hijab
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter not Elektronisches Buch and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. Nº de ref. del artículo: 9783031897061

Contactar al vendedor

Comprar nuevo

EUR 80,24
Convertir moneda
Gastos de envío: EUR 65,75
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Hijab, Omar
Publicado por Springer Nature, 2025
ISBN 10: 3031897064 ISBN 13: 9783031897061
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 590 pages. 9.26x6.11x9.41 inches. In Stock. Nº de ref. del artículo: x-3031897064

Contactar al vendedor

Comprar nuevo

EUR 126,44
Convertir moneda
Gastos de envío: EUR 28,83
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito