Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.
Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.
"Sinopsis" puede pertenecer a otra edición de este libro.
Omar Hijab obtained his doctorate from the University of California at Berkeley, and is faculty at Temple University in Philadelphia, Pennsylvania. Other book publications include Introduction to Calculus and Classical Analysis, 4th edition (978-3-319-28399-9) and Stabilization of Control Systems (978-0-387-96384-6).
Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.
Clear examples are supported with detailed figures and Python code; Jupyter notebooks and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter not Elektronisches Buch and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. 592 pp. Englisch. Nº de ref. del artículo: 9783031897061
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Math for Data Science presents the mathematical foundations necessary for studying and working in Data Science. The book is suitable for courses in applied mathematics, business analytics, computer science, data science, and engineering. The text covers the portions of linear algebra, calculus, probability, and statistics prerequisite to Data Science. The highlight of the book is the machine learning chapter, where the results of the previous chapters are applied to neural network training and stochastic gradient descent. Also included in this last chapter are advanced topics such as accelerated gradient descent and logistic regression trainability.Clear examples are supported with detailed figures and Python code; Jupyter not Elektronisches Buch and supporting files are available on the author's website. More than 380 exercises and nine detailed appendices covering background elementary material are provided to aid understanding. The book begins at a gentle pace, by focusing on two-dimensional datasets. As the text progresses, foundational topics are expanded upon, leading to deeper results at a more advanced level. Nº de ref. del artículo: 9783031897061
Cantidad disponible: 1 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: IHNGCZFKNY
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 592 pp. Englisch. Nº de ref. del artículo: 9783031897061
Cantidad disponible: 1 disponibles