This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
"Sinopsis" puede pertenecer a otra edición de este libro.
Mike Ludkovski is a Professor of Statistics and Applied Probability at University of California Santa Barbara. He was Department Chair during 2018-2022 and since 2016 is a Co-Director of the Center for Financial Mathematics and Actuarial Research. He has 15+ years of experience and 80+ publications in stochastic modeling of energy markets, numerical methods for stochastic control and predictive analytics. Among his current research interests are Monte Carlo techniques for optimal stopping/stochastic control, non-zero-sum stochastic games, and applications of machine learning in longevity and non-life insurance. He serves on 5+ Editorial Boards and his research has been funded by NSF, ARPA-E and Society of Actuaries. During 2015-2016 he was Chair of the SIAM Activity Group on Financial Mathematics & Engineering. He co-edited the volume on "Commodities, Energy and Environmental Finance" (2015). Ludkovski holds a Ph.D. in Operations Research and Financial Engineering from Princeton University and has held visiting positions at London School of Economics and Paris Dauphine University.
Jimmy Risk is an Assistant Professor of Mathematics and Statistics at California Polytechnic State University Pomona. He was temporary chair during Summer 2022 and has advised nine master's thesis students since taking his position in Fall 2017, several of which involving applications of Gaussian processes in modern data science including neural networks, natural language processing, and super-resolution. His education involves a Ph.D. in Statistics and Applied Probability with an emphasis in Financial Mathematics from University of California Santa Barbara, which has driven publications involving pricing and tail risk analysis using Gaussian processes to approximate conditional expectations. Additionally, Risk has an extensive actuarial science background, including developing a Gaussian process model for mortality rates, and more recently winning an open international mortality prediction contest held by the Society of Actuaries alongside Mike Ludkovski. Risk's recent research interests involve the theory and applications of Gaussian process kernels, which lie in the Reproducing Kernel Hilbert Space framework.
This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R notebooks that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,30 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applicationsthat demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping,and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R not Elektronisches Buch that provide the reader direct illustrations of the covered material and are available via a public GitHub repository. 138 pp. Englisch. Nº de ref. del artículo: 9783031808739
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applicationsthat demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping,and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R not Elektronisches Buch that provide the reader direct illustrations of the covered material and are available via a public GitHub repository. Nº de ref. del artículo: 9783031808739
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nº de ref. del artículo: 1966142873
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 49931567
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 49931567-n
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book describes the diverse applications of Gaussian Process (GP) models in mathematical finance. Spurred by the transformative influence of machine learning frameworks, the text aims to integrate GP modeling into the fabric of quantitative finance. The first half of the book provides an entry point for graduate students, established researchers and quant practitioners to get acquainted with GP methodology. A systematic and rigorous introduction to both GP fundamentals and most relevant advanced techniques is given, such as kernel choice, shape-constrained GPs, and GP gradients. The second half surveys the broad spectrum of GP applications that demonstrate their versatility and relevance in quantitative finance, including parametric option pricing, GP surrogates for optimal stopping, and GPs for yield and forward curve modeling. The book includes online supplementary materials in the form of half a dozen computational Python and R not Elektronisches Buch that provide the reader direct illustrations of the covered material and are available via a public GitHub repository.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. Nº de ref. del artículo: 9783031808739
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 150 pages. 9.25x6.10x8.90 inches. In Stock. Nº de ref. del artículo: x-3031808738
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403545870
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 410656977
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18403545860
Cantidad disponible: 4 disponibles