Artículos relacionados a Sequential Bifurcation Trees to Chaos in Nonlinear...

Sequential Bifurcation Trees to Chaos in Nonlinear Time-Delay Systems (Synthesis Lectures on Mechanical Engineering) - Tapa blanda

 
9783031796685: Sequential Bifurcation Trees to Chaos in Nonlinear Time-Delay Systems (Synthesis Lectures on Mechanical Engineering)

Sinopsis

In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.

The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Xing is an assistant professor at California Polytechnic State University. He received a B.S. from Sichuan University in 2013, an M.S. from Southern Illinois University Edwardsville in 2016, and a Ph.D. from Southern Illinois University Carbondale, in 2019. His research interests are in the area of nonlinear dynamics and time-delay systems. Dr. Xing has published 3 book chapters, 13 peer-review journal papers, and 8 conference papers on nonlinear dynamics.Professor Albert C.J. Luo has worked at Southern Illinois University Edwardsville. For over 30 years, Dr. Luos contributions on nonlinear dynamical systems and mechanics lie in: (i) the local singularity theory for discontinuous dynamical systems; (ii) dynamical systems synchronization; (iii) analytical solutions of periodic and chaotic motions in nonlinear dynamical systems; (iv) the theory for stochastic and resonant layer in nonlinear Hamiltonian systems; and (v) the full nonlinear theory for a deformable body. Such contributions have been scattered into 20 monographs and over 300 peer-reviewed journal and conference papers. Dr. Luo has served as an editor for the journal Communications in Nonlinear Science and Numerical Simulation, and book series on Nonlinear Physical Science (HEP) and Nonlinear Systems and Complexity (Springer). Dr. Luo was an editorial member for IMeCh E Part K Journal of Multibody Dynamics and Journal of Vibration and Control; and has also organized over 30 international symposiums and conferences on dynamics and control.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Sequential Bifurcation Trees to Chaos in Nonlinear...

Imagen del vendedor

Albert C. J. Luo
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems. 88 pp. Englisch. Nº de ref. del artículo: 9783031796685

Contactar al vendedor

Comprar nuevo

EUR 29,95
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Albert C. J. Luo
Publicado por Springer International Publishing, 2020
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems. Nº de ref. del artículo: 9783031796685

Contactar al vendedor

Comprar nuevo

EUR 29,95
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Siyuan Xing|Albert C.J. Luo
Publicado por Springer International Publishing, 2020
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Xing is an assistant professor at California Polytechnic State University. He received a B.S. from Sichuan University in 2013, an M.S. from Southern Illinois University Edwardsville in 2016, and a Ph.D. from Southern Illinois University Carbondale, in 2. Nº de ref. del artículo: 608129977

Contactar al vendedor

Comprar nuevo

EUR 28,42
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Xing, Siyuan; Luo, Albert C.J.
Publicado por Springer, 2020
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394745985

Contactar al vendedor

Comprar nuevo

EUR 41,50
Convertir moneda
Gastos de envío: EUR 9,84
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Xing, Siyuan; Luo, Albert C.J.
Publicado por Springer, 2020
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 401663838

Contactar al vendedor

Comprar nuevo

EUR 41,50
Convertir moneda
Gastos de envío: EUR 10,37
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Xing, Siyuan; Luo, Albert C.J.
Publicado por Springer, 2020
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18394745995

Contactar al vendedor

Comprar nuevo

EUR 44,33
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Albert C. J. Luo
ISBN 10: 3031796683 ISBN 13: 9783031796685
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -In this book, the global sequential scenario of bifurcation trees of periodic motions to chaos in nonlinear dynamical systems is presented for a better understanding of global behaviors and motion transitions for one periodic motion to another one. A 1-dimensional (1-D), time-delayed, nonlinear dynamical system is considered as an example to show how to determine the global sequential scenarios of the bifurcation trees of periodic motions to chaos. All stable and unstable periodic motions on the bifurcation trees can be determined. Especially, the unstable periodic motions on the bifurcation trees cannot be achieved from the traditional analytical methods, and such unstable periodic motions and chaos can be obtained through a specific control strategy.The sequential periodic motions in such a 1-D time-delayed system are achieved semi-analytically, and the corresponding stability and bifurcations are determined by eigenvalue analysis. Each bifurcation tree of a specific periodic motion to chaos are presented in detail. The bifurcation tree appearance and vanishing are determined by the saddle-node bifurcation, and the cascaded period-doubled periodic solutions are determined by the period-doubling bifurcation. From finite Fourier series, harmonic amplitude and harmonic phases for periodic motions on the global bifurcation tree are obtained for frequency analysis. Numerical illustrations of periodic motions are given for complex periodic motions in global bifurcation trees. The rich dynamics of the 1-D, delayed, nonlinear dynamical system is presented. Such global sequential periodic motions to chaos exist in nonlinear dynamical systems. The frequency-amplitude analysis can be used for re-construction of analytical expression of periodic motions, which can be used for motion control in dynamical systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 88 pp. Englisch. Nº de ref. del artículo: 9783031796685

Contactar al vendedor

Comprar nuevo

EUR 29,95
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito