Artículos relacionados a Event Detection in Time Series (Synthesis Lectures...

Event Detection in Time Series (Synthesis Lectures on Data Management) - Tapa dura

 
9783031759406: Event Detection in Time Series (Synthesis Lectures on Data Management)

Sinopsis

This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Eduardo Ogasawara has been a professor in the Department of Computer Science at the Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) since 2010. He holds a D.Sc. in Systems and Computer Engineering from COPPE/UFRJ. Between 2000 and 2007, he worked in the Information Technology (IT) sector, gaining extensive experience in workflows and project management. With a strong background in Data Science, he is currently focused on Data Mining and Time Series Analysis. He is a member of IEEE, ACM, and SBC. Throughout his career, he has authored numerous published articles and led projects funded by agencies such as CNPq and FAPERJ. Currently, he heads the Data Analytics Lab (DAL) at CEFET/RJ, where he continues to advance research in Data Science.

Rebecca Salles is a postdoctoral researcher at the Institut National de Recherche en Sciences et Technologies du Numérique (INRIA) in France. She holds a Ph.D. in Production Engineering and Systems (2023), an M.Sc. (with Honors, Best Dissertation award―SBBD 2021) (2019) and B.Sc. (summa cum laude, third-place award for Best Research―CSBC 2017) (2016) in Computer Science, and a technical degree in Industrial Informatics (2010) from the Federal Center for Technological Education of Rio de Janeiro (CEFET/RJ) in Brazil. As a data scientist, her research currently focuses on the topics of Data Mining, specializing in Time Series Analytics since 2014, including data pre-processing, predictive analysis, and event detection. She is an ACM member and has authored over 30 scientific products, including public frameworks and research papers published in well-known international conferences and scientific journals, also acting as a reviewer for DMKD, IEEE TKDE, and SBBD.

Fabio Porto is a Senior Researcher at the National Laboratory of Scientific Computing (LNCC) in Brazil. He is the founder of the Data Extreme Lab (DEXL) and the head of the AI Institute at LNCC. He holds an INRIA International Chair (2024–2028) at INRIA, France. Fabio earned his Ph.D. in Informatics from PUC-Rio in Brazil in 2001, with a research stay at INRIA (1999–2000), and completed a postdoc at the École Polytechnique Fédérale de Lausanne (EPFL) from 2004 to 2008. He has published more than 80 research papers in international conferences and scientific journals, including VLDB, SIGMOD, ICDE, and SBBD. He served as General Chair of VLDB 2018 and SBBD 2015. His main research interests include Data Management, Data-Driven AI, and Safety AI. He is a member of ACM and SBC.

Esther Pacitti is a professor of computer science at University of Montpellier. She is a senior researcher and co-head of the Zenith team at LIRMM, pursuing research in distributed data management. Previously, she was an assistant professor at University of Nantes (2002–2009) and a member of Atlas INRIA team. She obtained her “Habilitation à Diriger les Recherches” (HDR) degree in 2008 on the topic of data replication on different contexts (data warehouses, clusters and peer-to-peer systems). Since 2004 she has served or is serving as program committee member of major international conferences (VLDB, SIGMOD, CIKM, etc.) and has edited and co-authored several books. She has also published a significant amount of technical papers and journal papers in well-known international conferences and journals.

De la contraportada

This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics.

In addition, this book:

  • Develops a taxonomy covering granularity of events, general strategies, methods, machine learning processing, and data management
  • Provides a unified overview of the major types of time series events: anomalies, change points, and motifs
  • Discusses state-of-the-art metric evaluations for event detection methods as well as online event detection

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Event Detection in Time Series (Synthesis Lectures...

Imagen del vendedor

Eduardo Ogasawara
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics. 170 pp. Englisch. Nº de ref. del artículo: 9783031759406

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Eduardo Ogasawara
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics. Nº de ref. del artículo: 9783031759406

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ogasawara, Eduardo; Salles, Rebecca; Porto, Fabio; Pacitti, Esther
Publicado por Springer Verlag GmbH, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nº de ref. del artículo: 1864317761

Contactar al vendedor

Comprar nuevo

EUR 38,69
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ogasawara, Eduardo; Salles, Rebecca; Porto, Fabio; Pacitti, Esther
Publicado por Springer, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783031759406

Contactar al vendedor

Comprar nuevo

EUR 39,58
Convertir moneda
Gastos de envío: EUR 25,55
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ogasawara, Eduardo; Salles, Rebecca; Porto, Fabio; Pacitti, Esther
Publicado por Springer, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26403506015

Contactar al vendedor

Comprar nuevo

EUR 59,44
Convertir moneda
Gastos de envío: EUR 9,80
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Ogasawara, Eduardo; Salles, Rebecca; Porto, Fabio; Pacitti, Esther
Publicado por Springer, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 410696832

Contactar al vendedor

Comprar nuevo

EUR 59,71
Convertir moneda
Gastos de envío: EUR 10,24
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Ogasawara, Eduardo; Salles, Rebecca; Porto, Fabio; Pacitti, Esther
Publicado por Springer, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18403506005

Contactar al vendedor

Comprar nuevo

EUR 62,29
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Ogasawara, Eduardo/ Salles, Rebecca/ Porto, Fabio/ Pacitti, Esther
Publicado por Springer Nature, 2025
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 120 pages. 9.45x6.62x9.64 inches. In Stock. Nº de ref. del artículo: x-3031759400

Contactar al vendedor

Comprar nuevo

EUR 65,63
Convertir moneda
Gastos de envío: EUR 11,57
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Eduardo Ogasawara
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Nº de ref. del artículo: 9783031759406

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Eduardo Ogasawara
ISBN 10: 3031759400 ISBN 13: 9783031759406
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book is dedicated to exploring and explaining time series event detection in databases. The focus is on events, which are pervasive in time series applications where significant changes in behavior are observed at specific points or time intervals. Event detection is a basic function in surveillance and monitoring systems and has been extensively explored over the years, but this book provides a unified overview of the major types of time series events with which researchers should be familiar: anomalies, change points, and motifs. The book starts with basic concepts of time series and presents a general taxonomy for event detection. This taxonomy includes (i) granularity of events (punctual, contextual, and collective), (ii) general strategies (regression, classification, clustering, model-based), (iii) methods (theory-driven, data-driven), (iv) machine learning processing (supervised, semi-supervised, unsupervised), and (v) data management (ETL process). This taxonomy is weaved throughout chapters dedicated to the specific event types: anomaly detection, change-point, and motif discovery. The book discusses state-of-the-art metric evaluations for event detection methods and also provides a dedicated chapter on online event detection, including the challenges and general approaches (static versus dynamic), including incremental and adaptive learning. This book will be of interested to graduate or undergraduate students of different fields with a basic introduction to data science or data analytics. This book is dedicated to exploring and explaining time series event detection in databases. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031759406

Contactar al vendedor

Comprar nuevo

EUR 55,42
Convertir moneda
Gastos de envío: EUR 63,92
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito