Basic techniques we used: algebraic quasi-fractal systems, Erdős–Rényi algorithm, a notion of –giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdos–Rényi algorithm, a notion of –giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdös-Rényi algorithm, a notion of -giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues. 268 pp. Englisch. Nº de ref. del artículo: 9783031660399
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 2024th edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26401201857
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Buch. Condición: Neu. Algebraic Quasi-Fractal Logic of Smart Systems | Theory and Practice | Natalia Serdyukova (u. a.) | Buch | xvii | Englisch | 2024 | Springer | EAN 9783031660399 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 129484027
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erd¿s¿Rényi algorithm, a notion of ¿giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch. Nº de ref. del artículo: 9783031660399
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdös-Rényi algorithm, a notion of -giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues. Nº de ref. del artículo: 9783031660399
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 396256542
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18401201867
Cantidad disponible: 4 disponibles