Artículos relacionados a Big Data Analytics: Theory, Techniques, Platforms,...

Big Data Analytics: Theory, Techniques, Platforms, and Applications (SpringerBriefs in Applied Sciences and Technology) - Tapa dura

 
9783031556388: Big Data Analytics: Theory, Techniques, Platforms, and Applications (SpringerBriefs in Applied Sciences and Technology)

Sinopsis

This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks.

The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Gagangeet Singh Aujla [Senior Member, IEEE] is an Assistant Professor of Computer Science at Durham University, UK and a Fellow of Durham Energy Institute. Before this, he worked as a post-doctoral research associate at Newcastle University, a research associate at Thapar University (India), a visiting researcher at the University of Klagenfurt (Austria) and in various academic positions for over a decade. He received my PhD from Thapar University (India) and my master’s and bachelor’s degrees from the Punjab Technical University (India). He received the IEEE TCSC Award for Excellence in Scalable Computing (ECR) 2022 for contributions on research and development of sustainable edge-cloud continuum for resource-constrained smart environments. He also received "Early-Career Award 2022 (Runner-up)" from the IEEE TEMS TC on Blockchain and Distributed Ledger Technologies for contributions to the research and teaching in blockchain and distributed ledger technologies. He received the 2018 IEEE TCSC Outstanding PhD Dissertation Award for contributions to designing and developing methods for self-sustainable cloud data centres. He also received 2021 IEEE Systems Journal Best Paper Award and TIET Best Paper Award for his research articles. He worked on various funded research projects awarded by UKRI, EPSRC, the Department of Science and Technology (India), and the Austrian Federal Ministry of Education, Science and Research. He serves as Co-Secretary, IEEE UK and Ireland Diversity, Equality and Inclusion Committee and Environment Champion (Durham Greenscpace). He led the team organizing workshops (BlockSecSDN, BlockCPS, SecSDN and EdgeAI) with different IEEE Communication Society conferences like IEEE Infocom, IEEE Globecom, IEEE ICC, ACM/IEEE UCC and many more. Contributing to the research community, he serves as an Area Editor for Ad hoc Networks (Elsevier), an Associate Editor for IET Smart Grid, an Associate Editor for Concurrency and Computation: Practice and Experience (Wiley), and an Associate Editor for Frontier in Internet of Things. He has also served as a Guest Editor for IEEE Transaction on Industrial Informatics, IEEE Wireless Communications, IEEE Network, Neural Computing and Applications (Springer), Computer Communications (Elsevier), and Transactions on Emerging Telecommunications (Wiley). The main theme of his research is energy-efficient, resilient and intelligent surfaces (smart city, smart grid, IoT-Edge-Cloud systems, healthcare systems, drones). He published several research papers in the top tier transactions and journals (like, IEEE TKDE, IEEE TDSC, IEEE TVT, IEEE TNSM, IEEE TNSE, IEEE TITS, IEEE TSC, IEEE TCC, IEEE TSuSC, IEEE TGCN, IEEE TII, IEEE JSAC, IEEE IoTJ, IEEE System Journal, IEEE WCM, IEEE Communication Magazine, IEEE Network, IEEE Consumer Electronics Magazine, IEEE Internet Computing, IEEE IoT Magazine, IEEE Communication Standards Magazine) and conferences (like, IEEE ICC, IEEE Globecom, IEEE WoWMoM, IEEE Infocom, ACM Mobicom, ACM MobiHoc).

De la contraportada

This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks.

The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2024
  • ISBN 10 3031556380
  • ISBN 13 9783031556388
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas310
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,57 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Big Data Analytics: Theory, Techniques, Platforms,...

Imagen del vendedor

Demirbaga, Ümit|Aujla, Gagangeet Singh|Jindal, Anish|Kalyon, Oguzhan
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics wor. Nº de ref. del artículo: 1384735198

Contactar al vendedor

Comprar nuevo

EUR 137,26
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ãmit; Aujla, Gagangeet Singh; Jindal, Anish; Kalyon, Oguzhan
Publicado por Springer, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 47457269-n

Contactar al vendedor

Comprar nuevo

EUR 146,02
Convertir moneda
Gastos de envío: EUR 17,80
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ümit; Aujla, Gagangeet Singh; Jindal, Anish; Kalyon, Oguzhan
Publicado por Springer, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47457269

Contactar al vendedor

Comprar usado

EUR 150,67
Convertir moneda
Gastos de envío: EUR 17,57
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ãmit; Aujla, Gagangeet Singh; Jindal, Anish; Kalyon, Oguzhan
Publicado por Springer, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47457269

Contactar al vendedor

Comprar usado

EUR 151,95
Convertir moneda
Gastos de envío: EUR 17,80
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ümit/ Aujla, Gagangeet Singh/ Jindal, Anish/ Kalyon, Oguzhan
Publicado por Springer-Nature New York Inc, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura
Impresión bajo demanda

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 307 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __3031556380

Contactar al vendedor

Comprar nuevo

EUR 158,87
Convertir moneda
Gastos de envío: EUR 11,87
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ümit Demirbaga
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks.The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world. 308 pp. Englisch. Nº de ref. del artículo: 9783031556388

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ümit Demirbaga
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks.The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world. Nº de ref. del artículo: 9783031556388

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

UEmit Demirbaga
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book introduces readers to big data analytics. It covers the background to and the concepts of big data, big data analytics, and cloud computing, along with the process of setting up, configuring, and getting familiar with the big data analytics working environments in the first two chapters. The third chapter provides comprehensive information on big data processing systems - from installing these systems to implementing real-world data applications, along with the necessary codes. The next chapter dives into the details of big data storage technologies, including their types, essentiality, durability, and availability, and reveals their differences in their properties. The fifth and sixth chapters guide the reader through understanding, configuring, and performing the monitoring and debugging of big data systems and present the available commercial and open-source tools for this purpose. Chapter seven gives information about a trending machine learning, Bayesian network: a probabilistic graphical model, by presenting a real-world probabilistic application to understand causal, complex, and hidden relationships for diagnosis and forecasting in a scalable manner for big data. Special sections throughout the eighth chapter present different case studies and applications to help the readers to develop their big data analytics skills using various big data analytics frameworks.The book will be of interest to business executives and IT managers as well as university students and their course leaders, in fact all those who want to get involved in the big data world. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9783031556388

Contactar al vendedor

Comprar nuevo

EUR 146,03
Convertir moneda
Gastos de envío: EUR 35,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ümit; Aujla, Gagangeet Singh; Jindal, Anish; Kalyon, O?uzhan
Publicado por Springer, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783031556388

Contactar al vendedor

Comprar nuevo

EUR 182,88
Convertir moneda
Gastos de envío: EUR 7,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Demirbaga, Ümit; Aujla, Gagangeet Singh; Jindal, Anish; Kalyon, Oguzhan
Publicado por Springer, 2024
ISBN 10: 3031556380 ISBN 13: 9783031556388
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 47457269-n

Contactar al vendedor

Comprar nuevo

EUR 172,54
Convertir moneda
Gastos de envío: EUR 17,57
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 4 copia(s) de este libro

Ver todos los resultados de su búsqueda