Artículos relacionados a GANs for Data Augmentation in Healthcare

GANs for Data Augmentation in Healthcare ISBN 13: 9783031432071

GANs for Data Augmentation in Healthcare - Tapa blanda

 
9783031432071: GANs for Data Augmentation in Healthcare

Sinopsis

Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records are often different because of the cost of obtaining information and the time spent consuming the information. In general, clinical data is unreliable and therefore the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.

Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on an MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information within the data. This is a beneficial clinical application of GAN because it can effectivelyprotect patient confidentiality. This book covers the application of GANs on medical imaging augmentation and segmentation.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Arun Solanki is working as Assistant Professor in the Department of Computer Science and Engineering, Gautam Buddha University, Greater Noida, India where he has been working since 2009. He has worked as Time Table Coordinator, member Examination, Admission, Sports Council, Digital Information Cell, and other university teams from time to time. He has received M.Tech. Degree in Computer Engineering from YMCA University, Faridabad, Haryana, India. He has received his Ph.D. in Computer Science and Engineering from Gautam Buddha University in 2014. He has supervised more than 80 M.Tech. dissertations under his guidance.His research interests span Expert System, Machine Learning, and Search Engines. He has published many research articles in SCI/ Scopus indexed International journals/conferences like IEEE, Elsevier, Springer, etc. He has participated in many international conferences. He has been a technical and advisory committee member of many conferences. He has organized several FDP, Conferences, Workshops, and Seminars. He has chaired many sessions at International Conferences. Arun Solanki is working as Associate Editor in International Journal of Web-Based Learning and Teaching Technologies (IJWLTT)” IGI publisher. He has been working as Guest Editor for special issues in Recent Patents on Computer Science, Bentham Science Publishers. Arun Solanki is the editor of many Books with a reputed publisher like IGI Global, CRC and AAP. He is working as the reviewer in Springer, IGI Global, Elsevier, and other reputed publisher journals.Dr. Mohd Naved is a distinguished Associate Professor with an impressive career spanning over a decade in the fields of Business Analytics, Data Science, and Artificial Intelligence. As an educator, Dr. Naved has consistently demonstrated a commitment to the highest standards of teaching and mentoring, ensuring that his students receive an education that is both cutting-edge and grounded in real-world experience.His dedication to helping students achieve their full potential extends beyond the classroom, as he has been an active participant in the university's Mentor-Mentee Program, providing guidance and support to over 150 undergraduate and postgraduate students. In addition to his teaching prowess, Dr. Naved has excelled in the areas of education management, research, and curriculum development. He has served on various committees and led initiatives related to curriculum development, faculty recruitment and retention, and accreditation, contributing to the institutions he has worked with becoming centers of academic excellence in their respective fields. He has also successfully led the launch of several BBA/MBA programs, resulting in increased admissions and student satisfaction.As a researcher, Dr. Naved has made significant contributions to the fields of Business Analytics, Data Science, and Artificial Intelligence, with over 80+ publications in reputed scholarly journals andbooks. His research focuses on the applications of these disciplines in various industries, and he has supervised numerous research projects and dissertations, guiding students to successful outcomes.

De la contraportada

Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records often different because of the cost of obtaining information and the time-consuming information. In general, clinical data are unreliable, the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information with data. This is a beneficial clinical application of GAN because it can effectively protect patient confidentiality. The proposed book covers the application of GANs on medical imaging augmentation and segmentation.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031432040: GANs for Data Augmentation in Healthcare

Edición Destacada

ISBN 10:  3031432045 ISBN 13:  9783031432040
Editorial: Springer, 2023
Tapa dura

Resultados de la búsqueda para GANs for Data Augmentation in Healthcare

Imagen del vendedor

Publicado por Springer Verlag GmbH, 2024
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nº de ref. del artículo: 1981643591

Contactar al vendedor

Comprar nuevo

EUR 144,94
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Mohd Naved
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records are often different because of the cost of obtaining information and the time spent consuming the information. In general, clinical data is unreliable and therefore the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on an MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information within the data. This is a beneficial clinical application of GAN because it can effectivelyprotect patient confidentiality. This book covers the application of GANs on medical imaging augmentation and segmentation. 264 pp. Englisch. Nº de ref. del artículo: 9783031432071

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Mohd Naved
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering. Nº de ref. del artículo: 9783031432071

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Mohd Naved
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Computer-Assisted Diagnostics (CAD) using Convolutional Neural Network (CNN) model has become an important technology in the medical industry, improving the accuracy of diagnostics. However, the lack Magnetic Resonance Imaging (MRI) data leads to the failure of the depth study algorithm. Medical records are often different because of the cost of obtaining information and the time spent consuming the information. In general, clinical data is unreliable and therefore the training of neural network methods to distribute disease across classes does not yield the desired results. Data augmentation is often done by training data to solve problems caused by augmentation tasks such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue.Data Augmentation and Segmentation imaging using GAN can be used to provide clear images of brain, liver, chest, abdomen, and liver on an MRI. In addition, GAN shows strong promise in the field of clinical image synthesis. In many cases, clinical evaluation is limited by a lack of data and/or the cost of actual information. GAN can overcome these problems by enabling scientists and clinicians to work on beautiful and realistic images. This can improve diagnosis, prognosis, and disease. Finally, GAN highlights the potential for location of patient information within the data. This is a beneficial clinical application of GAN because it can effectivelyprotect patient confidentiality. This book covers the application of GANs on medical imaging augmentation and segmentation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 264 pp. Englisch. Nº de ref. del artículo: 9783031432071

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2024
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26403604025

Contactar al vendedor

Comprar nuevo

EUR 225,81
Convertir moneda
Gastos de envío: EUR 10,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2024
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 410598886

Contactar al vendedor

Comprar nuevo

EUR 239,29
Convertir moneda
Gastos de envío: EUR 10,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2024
ISBN 10: 303143207X ISBN 13: 9783031432071
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18403604019

Contactar al vendedor

Comprar nuevo

EUR 239,52
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito