Artículos relacionados a Session-Based Recommender Systems Using Deep Learning

Session-Based Recommender Systems Using Deep Learning - Tapa dura

 
9783031425585: Session-Based Recommender Systems Using Deep Learning

Sinopsis

This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.

The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.

This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Reza Ravanmehr has been a faculty member of the Department of Computer Engineering at Central Tehran Branch, Islamic Azad University, since 2001. His main research interests are recommender systems, large-scale data management systems, and social network analysis. He has published over 60 scientific papers, mainly in social network analysis and recommender systems.

Rezvan Mohamadrezaei is currently a Ph.D. candidate in software systems at Central Tehran Branch, Islamic Azad University. Her current research interests are in the areas of deep learning, recommender systems, and information retrieval. She has been a faculty member of the Computer Engineering Department at Karoon Institute of Higher Education, Ahvaz, since 2013.


De la contraportada

This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.

The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.

This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2023
  • ISBN 10 3031425588
  • ISBN 13 9783031425585
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición1
  • Número de páginas324
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,53 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 4,72 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Session-Based Recommender Systems Using Deep Learning

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783031425585_new

Contactar al vendedor

Comprar nuevo

EUR 171,75
Convertir moneda
Gastos de envío: EUR 4,72
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Reza Ravanmehr|Rezvan Mohamadrezaei
Publicado por Springer Nature Switzerland, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Elaborates concepts and fundamentals of session-based recommender systemsPresents the usage of using deep learning techniques in session-based recommender systems from different perspectivesAims at researchers, graduate students, and develo. Nº de ref. del artículo: 959198566

Contactar al vendedor

Comprar nuevo

EUR 162,51
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 46832491-n

Contactar al vendedor

Comprar nuevo

EUR 171,74
Convertir moneda
Gastos de envío: EUR 17,80
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Rezvan Mohamadrezaei
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems. 324 pp. Englisch. Nº de ref. del artículo: 9783031425585

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Rezvan Mohamadrezaei
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems. Nº de ref. del artículo: 9783031425585

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46832491

Contactar al vendedor

Comprar usado

EUR 187,12
Convertir moneda
Gastos de envío: EUR 17,53
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46832491

Contactar al vendedor

Comprar usado

EUR 187,58
Convertir moneda
Gastos de envío: EUR 17,80
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 46832491-n

Contactar al vendedor

Comprar nuevo

EUR 189,15
Convertir moneda
Gastos de envío: EUR 17,53
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Reza Ravanmehr
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). It presents the success of using deep learning techniques in many SBRS applications from different perspectives. For this purpose, the concepts and fundamentals of SBRS are fully elaborated, and different deep learning techniques focusing on the development of SBRS are studied.The book is well-modularized, and each chapter can be read in a stand-alone manner based on individual interests and needs. In the first chapter of the book, definitions and concepts related to SBRS are reviewed, and a taxonomy of different SBRS approaches is presented, where the characteristics and applications of each class are discussed separately. The second chapter starts with the basic concepts of deep learning and the characteristics of each model. Then, each deep learning model, along with its architecture and mathematical foundations, is introduced. Next, chapter 3 analyses different approaches of deep discriminative models in session-based recommender systems. In the fourth chapter, session-based recommender systems that benefit from deep generative neural networks are discussed. Subsequently, chapter 5 discusses session-based recommender systems using advanced/hybrid deep learning models. Eventually, chapter 6 reviews different learning-to-rank methods focusing on information retrieval and recommender system domains. Finally, the results of the investigations and findings from the research review conducted throughout the book are presented in a conclusive summary.This book aims at researchers who intend to use deep learning models to solve the challenges related to SBRS. The target audience includes researchers entering the field, graduate students specializing in recommender systems, web data mining, information retrieval, or machine/deep learning, and advanced industry developers working on recommender systems. This book focuses on the widespread use of deep neural networks and their various techniques in session-based recommender systems (SBRS). Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9783031425585

Contactar al vendedor

Comprar nuevo

EUR 180,87
Convertir moneda
Gastos de envío: EUR 35,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ravanmehr, Reza; Mohamadrezaei, Rezvan
Publicado por Springer, 2023
ISBN 10: 3031425588 ISBN 13: 9783031425585
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783031425585

Contactar al vendedor

Comprar nuevo

EUR 214,12
Convertir moneda
Gastos de envío: EUR 7,02
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda