Artículos relacionados a Machine Learning Methods for Multi-Omics Data Integration

Machine Learning Methods for Multi-Omics Data Integration - Tapa dura

 
9783031365010: Machine Learning Methods for Multi-Omics Data Integration

Sinopsis

The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integrating these large-scale heterogeneous data sets into one learning model.

This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for validation. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. The book categorizes different levels of integrations, ranging from early, middle, or late-stage among multi-view models. The underlying models target different objectives, such as knowledge discovery, pattern recognition, disease-related biomarkers, and validation tools for multi-omics data.

Finally, the book emphasizes practical applications and case studies, making it an essential resource for researchers and practitioners looking to apply machine learning to their multi-omics data sets. The book covers data preprocessing, feature selection, and model evaluation, providing readers with a practical guide to implementing machine learning techniques on various multi-omics data sets.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Abedalrhman Alkhateeb earned his Bachelor's degree in Computer Science from the University of Jordan, Amman, Jordan, in 2004, and his MSc and Ph.D. in Computer Science from the University of Windsor, Canada, in 2011 and 2018, respectively. He is currently an Assistant Professor at Princess Sumaya University for Technology in Amman, Jordan. Previously, he served as an Assistant Professor and Mitacs Accelerate Postdoctoral Fellow at the University of Windsor, Canada. His research interests include machine learning, deep learning, bioinformatics, and health informatics.

Abedalrhman Alkhateeb has authored and co-authored more than 50 papers in prestigious journals and conferences. He also organized a workshop titled “MODI: Machine Learning Models for Multi-omics Data Integration” for three consecutive years from 2019 to 2021 in conjunction with ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB). His recent research focuses on the health outcomes of various types of cancers. He has gained industrial experience as a bioinformatician and data analyst in several organizations, including ITOS Oncology Inc. and BlackBerry Limited in Canada, and UAE University in the United Arab Emirates.

Luis Rueda received his Bachelor’s degree in computer science from the National University of San Juan, Argentina, in 1993, and his Master’s and Ph.D. degrees in computer science from Carleton University, Canada, in 1998 and 2002, respectively. He is currently a Full Professor in the School of Computer Science at the University of Windsor. His current research interests are mainly focused on devising shallow and deep machine learning and representation learning algorithms at the fundamental level and applications in bioinformatics and cybersecurity to problems in biomedical imaging, transcriptomics, integrative genome-wide data analysis, identification of cancer biomarkers, user authentication, spam review detection and social engineering.

Luis Rueda holds four patents on machine learning and cybersecurity and has more than 200 publications and presentations in prestigious journals and conferences in machine learning, computational biology, and cybersecurity. He currently serves as Associate Editor of IEEE/ACM Transactions on Computational Biology and Bioinformatics, and Network Modeling Analysis in Health Informatics and Bioinformatics. He is also a member of the program committees of several conferences in the field. He is also a Senior Member of the IEEE, and a Member of t


De la contraportada

The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integrating these large-scale heterogeneous data sets into one learning model.

This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for validation. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. The book categorizes different levels of integrations, ranging from early, middle, or late-stage among multi-view models. The underlying models target different objectives, such as knowledge discovery, pattern recognition, disease-related biomarkers, and validation tools for multi-omics data.

Finally, the book emphasizes practical applications and case studies, making it an essential resource for researchers and practitioners looking to apply machine learning to their multi-omics data sets. The book covers data preprocessing, feature selection, and model evaluation, providing readers with a practical guide to implementing machine learning techniques on various multi-omics data sets.


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 2,25 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 7,65 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031365041: Machine Learning Methods for Multi-Omics Data Integration

Edición Destacada

ISBN 10:  3031365046 ISBN 13:  9783031365041
Editorial: Springer, 2024
Tapa blanda

Resultados de la búsqueda para Machine Learning Methods for Multi-Omics Data Integration

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783031365010

Contactar al vendedor

Comprar nuevo

EUR 191,57
Convertir moneda
Gastos de envío: EUR 7,65
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Alkhateeb, Abedalrhman (EDT); Rueda, Luis (EDT)
Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 46851257-n

Contactar al vendedor

Comprar nuevo

EUR 197,12
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783031365010_new

Contactar al vendedor

Comprar nuevo

EUR 194,08
Convertir moneda
Gastos de envío: EUR 13,75
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Alkhateeb, Abedalrhman (EDT); Rueda, Luis (EDT)
Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 46851257-n

Contactar al vendedor

Comprar nuevo

EUR 194,07
Convertir moneda
Gastos de envío: EUR 17,22
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Luis Rueda
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integratingthese large-scale heterogeneous data sets into one learning model. This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for validation. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. The book categorizes different levels of integrations, ranging from early, middle, or late-stage among multi-view models. The underlying models target different objectives, such as knowledge discovery, pattern recognition, disease-related biomarkers, and validation tools for multi-omics data.Finally, the book emphasizes practical applications and case studies, making it an essential resource for researchers and practitioners looking to apply machine learning to their multi-omics data sets. The book covers data preprocessing, feature selection, and model evaluation, providing readers with a practical guide to implementing machine learning techniques on various multi-omics data sets. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031365010

Contactar al vendedor

Comprar nuevo

EUR 212,79
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Alkhateeb, Abedalrhman (EDT); Rueda, Luis (EDT)
Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46851257

Contactar al vendedor

Comprar usado

EUR 221,96
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783031365010

Contactar al vendedor

Comprar nuevo

EUR 228,12
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platform. Nº de ref. del artículo: 877456037

Contactar al vendedor

Comprar nuevo

EUR 180,07
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Luis Rueda
ISBN 10: 3031365011 ISBN 13: 9783031365010
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The advancement of biomedical engineering has enabled the generation of multi-omics data by developing high-throughput technologies, such as next-generation sequencing, mass spectrometry, and microarrays. Large-scale data sets for multiple omics platforms, including genomics, transcriptomics, proteomics, and metabolomics, have become more accessible and cost-effective over time. Integrating multi-omics data has become increasingly important in many research fields, such as bioinformatics, genomics, and systems biology. This integration allows researchers to understand complex interactions between biological molecules and pathways. It enables us to comprehensively understand complex biological systems, leading to new insights into disease mechanisms, drug discovery, and personalized medicine. Still, integrating various heterogeneous data types into a single learning model also comes with challenges. In this regard, learning algorithms have been vital in analyzing and integratingthese large-scale heterogeneous data sets into one learning model. This book overviews the latest multi-omics technologies, machine learning techniques for data integration, and multi-omics databases for validation. It covers different types of learning for supervised and unsupervised learning techniques, including standard classifiers, deep learning, tensor factorization, ensemble learning, and clustering, among others. The book categorizes different levels of integrations, ranging from early, middle, or late-stage among multi-view models. The underlying models target different objectives, such as knowledge discovery, pattern recognition, disease-related biomarkers, and validation tools for multi-omics data.Finally, the book emphasizes practical applications and case studies, making it an essential resource for researchers and practitioners looking to apply machine learning to their multi-omics data sets. The book covers data preprocessing, feature selection, and model evaluation, providing readers with a practical guide to implementing machine learning techniques on various multi-omics data sets. 176 pp. Englisch. Nº de ref. del artículo: 9783031365010

Contactar al vendedor

Comprar nuevo

EUR 213,99
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Alkhateeb, Abedalrhman (EDT); Rueda, Luis (EDT)
Publicado por Springer, 2023
ISBN 10: 3031365011 ISBN 13: 9783031365010
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46851257

Contactar al vendedor

Comprar usado

EUR 222,27
Convertir moneda
Gastos de envío: EUR 17,22
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 9 copia(s) de este libro

Ver todos los resultados de su búsqueda